

Draft report for public consultation
Health technology assessment (HTA)
of extending the national
immunisation schedule to include
HPV vaccination of boys

Appendices

24 July 2018

Appendix 2

Appendix 2A. Summary of HPV immunisation programmes and uptake, by country

Country and or region	Vaccin e used	Progra mme format	Financi ng	Availabilit y	Programme description	3 doses vaccination coverage (year)	Comments
EUROPE							
Austria	9- valent	Gender neutral		2014 (September) Recommend ation given in 2007; funding & 2- dose schedule started in 2014	Target age: 9- 14. Schools/ primary care- based delivery	62% for boys & girls (2015)	Recommend ation given in 2007; funding & 2- dose schedule started in 2014
Belgium	4- valent	Females		Jun-05	Target age: 12-13; catch- up 13-18	Varies by region: 30%- 83% (2012- 2013). Lower coverage in Flanders region, higher coverage in Wallonian region	Lower coverage in Flanders region, higher coverage in Wallonian region
Bulgaria	4- valent	Females		Jul-05	Target age: 12		
Czech Republic	4- valent	Females	Reimbur sed; no program me in place	Jul-05	Target age: 13, primary care provided. Reimbursed; no programme in place.	65% (Unknown)	Reimbursed – no official national immunisatio n programme
Denmark	9- valent	Females	Private	2006 (October)	Private vaccination: Girls and boys ≥ 9 yrs	Private vaccination: No information for total group of females. About 15% for those born in 1985- 1992	
			Public	Nov-17	School-based programme changed to Gardasil®9 (2 dose schedule)	Children	
				Jan-09	GP Childhood immunisation programme: Girls 12 yrs	Children immunisation programme by GPs: Girls 12 yrs: 79% (2012)	
Finland	4-	Females		Jul-05	Target age 11-	68% (2015)	

	valent				12; schools- based		
France	4- valent	Females		Jun-05	Target age: 11-14; catch- up: age 15-23; delivered in primary care or health centres	17% for 16 year olds (2014)	
Germany	9- valent	Gender neutral (Saxony)	Public	Mar-07	GP/community programme: Routine vaccination of girls aged 12-17 yrs	Girls 16-18: about 40% (2009). 2012: 16-56%. Coverage by age: 14 yo - 16.3%; 15 yo - 37.7%; 16 yo - 45.9%; 17 yo - 55.6%.	Initial recommend ation was for a vaccination age of 12 to 17 and 3- dose vaccination; STIKO recommend ation since 2014 has been 2-dose vaccination for girls between the ages of 9 – 14 years
Greece	4- valent	Females		Jun-05	Target age: 11-18; delivered in primary care or health centres	Varies by source: 5%- 27% (2011)	
Greenlan d	4- valent	Females		Jun-05	Target age: 12; catch-up: 13-15 years. Mixed delivery		
Hungary	4- valent	Females		Jul-05	Target age: 12; schools- based	80% (2015) for 2-dose schedule	
Iceland	4- valent	Females		Jul-05	12; schools- based	88% (2014)	
Ireland	4- valent	Females	Public	Jul-05	Target age: 12–13; schools-based	85% for 12-13 yo, 45% for 18-19 yo (2014)	
Italy	9- valent	Gender neutral		2007–2008	Target age: 12; catch-up varies by region. Delivered by primary care/health centres	11-71% (2014). Coverage by age: 11 yo - 10.7%; 12 yo - 62.4%; 13 yo - 67.0%; 14 yo - 71.1%; 15 yo - 72.1%; 16 yo - 70.9%; 17 yo - 70.8%	
Latvia	4- valent	Females		Jul-05	Target age: 12. Mixed delivery	61% (2011)	
Liechtens tein	4- valent	Gender neutral			Target age: 11-14; catch up 15-19		

Luxembo urg	4- valent	Females		Jun-05	Target age: 12-18' delivery by primary care/health centres	29% (2008)	
Republic of Macedoni a (formerly the Yugoslav Republic of Macedoni a)	4- valent	Females		Jul-05	Target age: 12; catch-up 13-16; schools- based delivery	65% (2012)	
Netherla nds	4- valent	Females		Jul-05	Target age: 12; Catch-up: 13-16. Mixed delivery	61% (2014)	
Norway	4- valent	Females		Jul-05	Target age: 12. Schools-based delivery	79% (2014)	
Portugal	9- valent	Females		Jul-05	Target age: 13; Catch-up: 17. Primary care/health centre delivery	87% (2015)	
Romania	4- valent	Females		Jul-05	Target age: 12. Mixed delivery	<5%	
San Marino	4- valent	Females		Jul-05	Target age: 11		
Slovenia	9- valent	Females		Jul-05	Target age: 12. Schools-based delivery	49% (2012)	
Spain	4- valent	Females		Jun-05	Target age: 11–14. Delivery varies by region	73% (2014)	
Sweden	4- valent	Females	Partially subsidise d	October 2006 (Opportunist ic vaccination)	Opportunistic vaccination: Girls 13-20	2014 (Garland): 80%	
			Public	2012	School-based programme: Girls 11-12 yrs; School-based catch-up: Girls 13-18 yrs	NA	
UK - England	2- valent, switch to 4- valent in Septem ber 2012	Females	Public	Sep-08	School-based programme: Girls 12-13 yrs School- based/GP catch-up: Girls 14-17 yrs	School-based programme: Girls 12-13 yrs: 84% (2011) Catch-up: Girls 14-17 yrs: 56% (range from 39 to 76%) (2011)	2014 UK (Garland): 86%

UK - Scotland	2- valent, switch to 4- valent in Septem ber 2012	Females	Public	Sep-08	School-based programme: Girls 12-13 yrs School- based/GP catch-up: Girls 14-17 yrs	School-based programme: Girls 12-13 yrs: 90% (2011) Catch-up (in and out of school): Girls 13-17 yrs: 88% (33% among school leavers) (2011)	2014 UK (Garland): 86%
CENTRAL A						ı	
Uzbekista n	4- valent			Jul-05			
AMERICAS		<u> </u>	<u> </u>	<u> </u>			
Argentin a	4- valent	Gender neutral		Jul-05	Target age: 11. Mixed delivery	50% (2013)	
Barbados	4- valent			Jul-05	Target age: 11		
Bermuda	4- valent	Gender neutral		Jun-05	Target age: 11-13		
Brazil	4- valent	Gender neutral		Jul-05	Target age: 9. Also recommended in HIV+. Mixed delivery		Also recommend ed in HIV+ population
Canada	9- valent	Gender neutral	Private Public	August 2006 (vaccine available privately)	Private vaccination: Girls/women 9- 26 yrs School-based	Private vaccination: Girls/women 9- 26 yrs: 3% at least one dose (2009) School-based	
			rubiic	Зер-00	programme: Girls Grade 6 (≈ 11-12 yrs)	programme: Girls 11-12 yrs: about 50% (2009). 2013 (Garland): 60 to 85% by region	
Cayman Islands	4- valent	Females			Target age: 11-13		
Chile	4- valent	Females		Jul-05	Target age: 9. Catch-up age 11-12. Schools- based delivery. Also recommended in HIV+		Also recommend ed in HIV+ population
Colombia	4- valent	Females		Jul-05	Target age: 9- 17. Mixed delivery	87% (2013)	
Ecuador	4- valent	Females		Jul-05	Target age: 9. Clinic delivery		
Guyana	4- valent	Females		Jul-05	Target age: 11		
Mexico	4- valent	Females		Jun-05	Target age: 10. Mixed delivery. Boys also vaccinated in Mexico City	0.67	Boys vaccinated in Mexico City

<u> </u>	4			1 05	T 1 10	(70/ (0040)	1
Panama	4- valent	Gender neutral		Jun-05	Target age: 10. Mixed delivery	67% (2010)	
Paraguay	4- valent	Females		Jul-05	Target age: 10. Mixed delivery		
Puerto Rico	4- valent	Gender neutral		Jun-05	Target age: 11-18 (females and males). Mixed delivery		
Peru	4- valent	Females		Jul-05	Target age: 10. Schools-based delivery		
Surinam	4- valent	Females		Jul-05	Target age: 9		
Trinidad & Tobago	4- valent	Females		Jul-05	Target age: 11-12		
Uruguay	4- valent	Females		Jul-05	Target age: 12. Clinic-based delivery		
US	9- valent	Gender neutral	Mix of public and private	Jun-06	Primary care providers vaccination: Girls/women 11 12 yrs routine and 13-26 yrs, if not previously vaccinated. Boys/men 11-12 yrs routine and 13-21 yrs if not previously vaccinated since October 2011 MSM 22-26years or immunocompro mised since October 2011	Routine and catch-up vaccination: Girls 13-17 yrs: 33% (2012). Women 19-26 yrs: 21% at least one dose (2010). 2014 (Garland): 40% for females, 22% for males	School- based programme: Girls 12-13 yrs: 71% (2012); Boys 12-13: NA School- based catch-up: Girls 14-17 yrs:70% (2012); Boys 14-15 yrs: NA
ASIA-PACI							
Australia	4- valent	Gender neutral	Public	2007 (April)	School-based programme: Girls 12-13 yrs Boys 12-13 yrs since February 2013 School- based catch- up: Girls 14-17 yrs (2007- 2009) Boys 14- 15 yrs (2013- 2014)	School-based programme: Girls 12-13 yrs: 71% (2012) Boys 12-13: NA School-based catch-up: Girls 14-17 yrs:70% (2012) Boys 14-15 yrs: NA 2014 Garland: 73.1% girls (slightly lower boys)	
Bhutan	4- valent	Females		Jul-05	Target age: 12. Mixed delivery. Catch-up 13- 18.	>90% (2014)	
Brunei	4- valent	Females		2012-2015	Target age: 12-13		

Malaysia	4-	Females		Jul-05	Target age: 13.	87% (2011)	
ivialaysia	valent	i ciliales		Jui-05	Schools-based	07 70 (2011)	
					delivery. Catch-		
1	4	F I		L.I.OF	up 13-18	0 (0) (2014)	
Japan	4- valent	Females		Jul-05	Target age: 13. Health centre	0.6% (2014) (Sapporo)	
	vaiciit				delivery	(Заррого)	
Philippin	4-	Females		Jul-05	Target age: 9		
es	valent				Health centre		
WESTERN	PACIFIC				delivery		
F:::	4-	Females	ı	lum OF	Tarret and 12		
Fiji	valent	remaies		Jun-05	Target age: 13		
Kiribati	4-	Females		Jul-05	NA		
-	valent						
Federate d States	4- valent	Females		Jul-05	Target age: 9. Primary		
of	valent				care/health		
Micronesi					centre delivery		
a				1 05			
Marshall Islands	4- valent	Females		Jun-05	Target age: 11-12. Primary		
isianus	Valcin				care/health		
					centre delivery		
Palau	4-	Females		Jul-05	Target age: 9-		
Singapor	valent 4-	Females		Jul-05	26 Target age: 9–		
e	valent	remaies		Jui-05	26. Primary		
					care/health		
					centre delivery.		
New Zealand	9- valent	Gender neutral	Public	Sep-08	School- based/GP/com	School- based/GP/com	
Zealand	Valcin	ricuttai			munity	munity	
					programme:	programme:	
					Girls 11-12 yrs;	Girls 11-12 yrs:	
					School- based/GP/com	around 55% (2012) (57% in	
					munity catch-	Auckland)	
					<u>up:</u> Girls 13-20	School-	
					yrs (2008-	based/GP/com	
					2010)	munity catch- up: Girls 13-20	
						yrs (2008-	
						2010): 50%	
						(2012). <u>2014</u>	
						(Garland): 56%	
EASTERN N	I MEDITERI	RANEAN				30%	
Abu	4-	Females		Jun-05	Target age:	59% (2011)	
Dhabi,	valent				15–17.	(=0)	
United					Schools-based		
Arab Emirates					delivery. Catch- up 18-26		
Israel	4-	Gender		2011	Target age: 14	~60% (2014)	
	valent	neutral		(females) &	(females) &		
				2015	14(males).		
	I .	1		(males)	Schools-		
					hased/health		
					based/health centre delivery		
AFRICA					based/health centre delivery		

Botswan a	4- valent	Females	Jul-05	Target age: 9- 13. Schools- based/health centre delivery. 2-dose programme; 3 doses for HIV positive		2-dose programme; 3 doses for HIV positives
Lesotho	4- valent		Jul-05	Target age: 9- 13		
Libya	4- valent		Jul-05	Target age: 15		
Rwanda	4- valent		Jul-05	Target age: grade 6. Schools-based delivery. Catch up: 9th school year	99% (2013)	
South Africa	4- valent		Jul-05	Target age: 9 (grade 4). Schools-based delivery	87% (dose 1)	
Republic of Seychelle s	4- valent		Jul-05	Target age: 10-12. Schools- based delivery		
Uganda	4- valent		Jul-05	Target age: 10. Schools-based delivery		

Sources:

Garland SM, Kjaer SK, Munoz N, Block SL, Brown DR, DiNubile MJ, et al. Impact and Effectiveness of the Quadrivalent Human Papillomavirus Vaccine: A Systematic Review of 10 Years of Real-world Experience. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2016;63(4):519-27.

Drolet M, Benard E, Boily MC, Ali H, Baandrup L, Bauer H, et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. The Lancet Infectious diseases. 2015;15(5):565-8

Appendix 4

Appendix 4.1 Search terms and results

- 1. Medline (PubMed)
- A) Intervention

(HPV vaccin*) OR (human papillomavirus vaccin*) OR (HPV immuni*) OR (human papillomavirus immuni*) OR (gardasil*) OR (cervarix) OR (silgard)

B) Filters

Clinical Trials, Humans

<u>= 355 Trials</u>

2. Embase

A) Intervention

(HPV vaccin*) OR (human papillomavirus vaccin*) OR (HPV immuni*) OR (human papillomavirus immuni*) OR (gardasil*) OR (cervarix) OR (silgard)

B) Filters

Randomised Controlled Trials, Humans

= 435 Trials (of which 107 were unique to Embase)

3. Cochrane Register of Controlled Trials

A) Intervention

(HPV vaccin*) OR (human papillomavirus vaccin*) OR (HPV immuni*) OR (human papillomavirus immuni*) OR (gardasil*) OR (cervarix) OR (silgard)

B) Filters

Trials

<u>= 597 Trials</u>

4. Clinicaltrials.gov

A) Intervention

(HPV vaccin*) OR (human papillomavirus vaccin*) OR (HPV immuni*) OR (human papillomavirus immuni*) OR (gardasil*) OR (cervarix) OR (silgard)

B) Filters

Phase II/III/IV Trials

= 76 Trials (of which Merck Sharp and Dohme (2016) (Protocol V503-010) NCT01984697 was full text reviewed)

Appendix 4.2 Table v1.0 Studies excluded after full text review

Study	Reason for exclusion
Ault 2011 ⁽²⁶⁰⁾	Irrelevant study design (observed rates of AIS detection +/- HPV prevalence in two trials)
Barr 2008 ⁽²⁶¹⁾	Irrelevant population
Draper 2013 ⁽²⁶²⁾	Irrelevant intervention (2-valent HPV vaccine)
Einstein 2009 ⁽²⁶³⁾	Irrelevant intervention (2-valent HPV vaccine)
Einstein 2011a ⁽²⁶⁴⁾	Irrelevant intervention (2-valent HPV vaccine)
Einstein 2011b ⁽²⁶⁵⁾	Irrelevant intervention (2-valent HPV vaccine)
Einstein 2014a ⁽²⁶⁶⁾	Irrelevant intervention (2-valent HPV vaccine)
Einstein 2014b ⁽²⁶⁷⁾	Irrelevant intervention (2-valent HPV vaccine)
Future II Study Group 2007b ⁽²⁶⁸⁾	Irrelevant population (women with virological evidence of HPV infection at baseline)
Garland 2015 ⁽²⁶⁹⁾	Irrelevant population (Study population previously received 4-valent HPV vaccine)
Gilca 2015 ⁽²⁷⁰⁾	Irrelevant intervention (booster doses)
Joura 2012 ⁽²⁷¹⁾	Irrelevant study design (retrospective pooled analysis)
Joura 2016 ⁽²⁷²⁾	Irrelevant publication (abstract)
Krajden 2011 ⁽²⁷³⁾	Irrelevant study design (comparison of antibody response detection techniques)
Krajden 2014 ⁽²⁷⁴⁾	Irrelevant study design (comparison of antibody response detection techniques)
Leung 2015 ⁽²⁷⁵⁾	Irrelevant intervention (2-valent HPV vaccine)
Luna 2013 ⁽²⁷⁶⁾	Irrelevant population (older women > 24 years)
Luxembourg 2015a ⁽²⁷⁷⁾	Irrelevant study design (lot consistency study)
Luxembourg 2015b ⁽²⁷⁸⁾	Duplication (phase II results; longer follow-up in Joura 2015 and Huh 2017)
Munoz 2009 ⁽²⁷⁹⁾	Irrelevant population (older women > 24 years)
Ogilvie 2017 ⁽²⁸⁰⁾	Irrelevant publication (research letter)
Olsson 2007 ⁽²⁸¹⁾	Irrelevant intervention (booster dose)
Olsson 2009 ⁽²⁸²⁾	Irrelevant population (women with virological evidence of HPV infection at baseline)
Paavonen 2008 ⁽²⁸³⁾	Duplication (review article of Joura 2007)
Palefsky 2011 ⁽²⁸⁴⁾	Irrelevant population (MSM)
Perez 2008 ⁽²⁸⁵⁾	No response from author (to clarify results, timelines and methodology)
Petersen 2017 ⁽²⁸⁶⁾	Irrelevant study design (combined analysis of baseline covariate impact of five phase 3 trials)
Sankaranarayanan 2016 ⁽²⁸⁷⁾	Irrelevant study design (prospective cohort study)
Villa 2005 ⁽²⁸⁸⁾	Longer follow-up reported in Villa 2006

Wheeler 2008 ⁽²⁸⁹⁾	Irrelevant intervention (HBV vaccine co-administration)
Wheeler 2009 ⁽²⁹⁰⁾	Irrelevant population (mITT not reported; sexually-active women aged 16 to 26 years)
Merck Sharp and Dohme (2016) (Protocol V503-010) ⁽²⁹¹⁾	Duplication (trial results reported by Iversen 2016)

Abbreviations: HBV, hepatitis B vaccine; RCT, randomised controlled trial;

Appendix 4.2 Table v2.0 Studies excluded after full text review

Reason for exclusion	Study references
Irrelevant intervention (n=10)	(262-267, 270, 275, 281, 289)
Irrelevant population (n=8)	(261, 268, 269, 276, 279, 282, 284, 290)
Irrelevant study design (n=7)	(260, 271, 273, 274, 277, 286, 287)
Irrelevant publication (n=2)	(272, 280)
Duplication (n=3)	(278, 283, 291)
Longer follow-up reported (n=1)	(288)
No response from author (n=1)	(285)

Appendix 4.3 Forest plots

Figure 4.6 Estimate of effect on HPV 06/11/16 or 18-related persistent infection comparing the 4-valent HPV vaccine versus placebo in women 16-23 years at 60 months (unrestricted susceptible population).

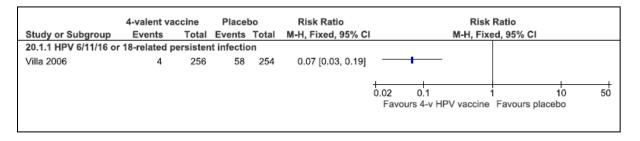


Figure 4.7 Estimate of effect on HPV 06/11/16 or 18-related CIN, external anogenital and vaginal lesions comparing the 4-valent HPV vaccine versus placebo in women aged 15 to 26 years at 42 months (generally HPV-naïve population)

	4-valent va	ccine	Place	bo	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
18.1.1 CIN 1						
Munoz 2010	3	4616	136	4680	0.02 [0.01, 0.07]	
18.1.2 CIN 2						
Munoz 2010	0	4616	48	4680	0.01 [0.00, 0.17]	
18.1.3 CIN 3						
Munoz 2010	0	4616	41	4680	0.01 [0.00, 0.20]	
18.1.4 AIS						
Munoz 2010	0	4616	3	4680	0.14 [0.01, 2.80]	
18.1.5 Genital warts						
Munoz 2010	5	4689	140	4735	0.04 [0.01, 0.09]	
18.1.6 VIN/VaIN 1						
Munoz 2010	1	4689	21	4735	0.05 [0.01, 0.36]	
18.1.7 VIN/VaIN 2/3						
Munoz 2010	1	4689	22	4735	0.05 [0.01, 0.34]	
						0.001 0.1 1 10 1000
						0.001 0.1 1 10 1000 Favours 4-v HPV vaccine Favours placebo

Figure 4.8 Estimate of effect on any HPV type-related CIN, external anogenital and vaginal lesions comparing the 4-valent HPV vaccine versus placebo in women 16-24 years at 36 months (generally HPV-naïve population)

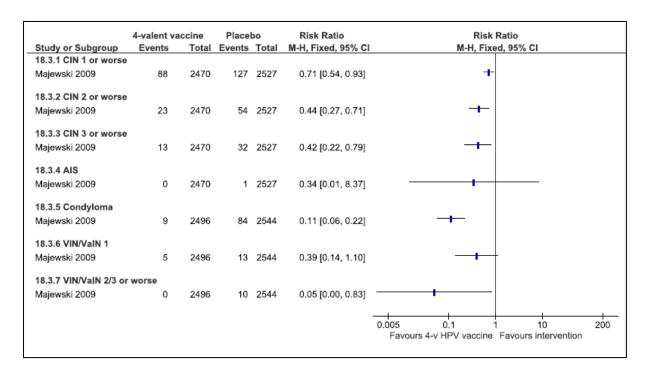


Figure 4.9 Estimate of effect on HPV 06/11/16 or 18-related CIN, external anogenital and vaginal lesions comparing the 4-valent HPV vaccine versus placebo in women 16-26 years at 36 and 42 months (unrestricted susceptible population)

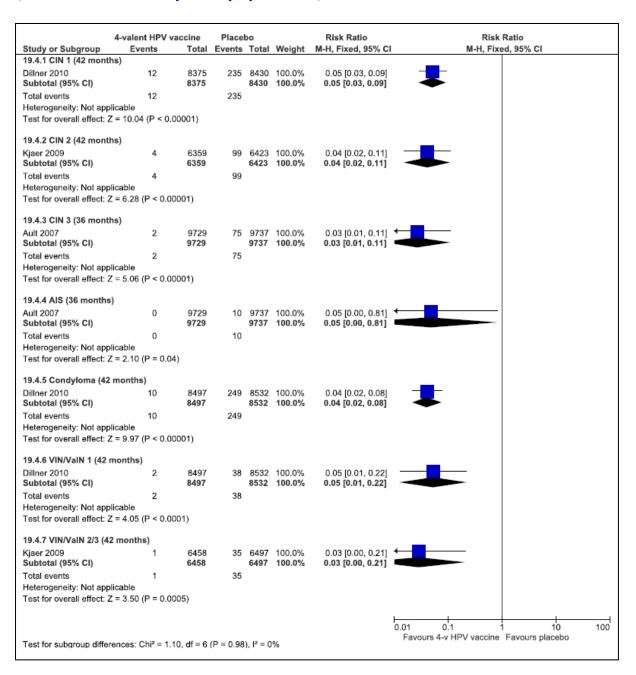


Figure 4.10 Estimate of effect on HPV 06/11/16 or 18-related persistent infections comparing the 4-valent HPV vaccine versus placebo in 16-26 year old males at 2.9 years (median) (Naïve-to-relevant type population)

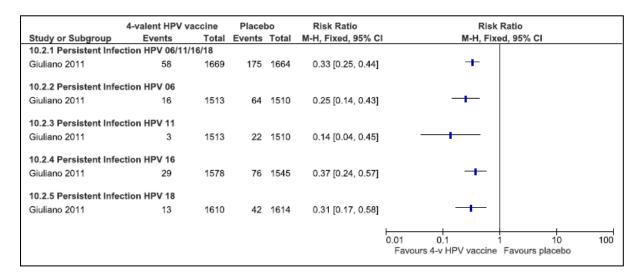


Figure 4.11 Estimate of effect on HPV 06/11/16 or 18-related lesions comparing the 4-valent HPV vaccine versus placebo in 16-26 year old males at 2.9 years (median) (Naïve-to-relevant type population)

	4-valent HPV vac	cine	Placeb	00	Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
10.1.1 External GLs (H	PV 06/11/16/18)						
Giuliano 2011	13	1775	52	1770	0.25 [0.14, 0.46]		
10.1.2 Condyloma acu	minatum						
Giuliano 2011	10	1775	48	1770	0.21 [0.11, 0.41]		
10.1.3 All PIN Lesions							
Giuliano 2011	4	1775	4	1770	1.00 [0.25, 3.98]	- + -	
10.1.4 PIN Grade 1							
Giuliano 2011	2	1775	3	1770	0.66 [0.11, 3.97]		
10.1.5 PIN Grade 2 or 3	3						
Giuliano 2011	2	1775	1	1770	1.99 [0.18, 21.97]		
10.1.6 Penile/perianal/	perineal cancer						
Giuliano 2011	0	1775	0	1770	Not estimable		
						0.01 0.1 1 10 Favours 4-v HPV vaccine Favours intervention	100
						ravours 4-v nr v vaccine ravours intervention	

Figure 4.12 Estimate of effect on all-HPV type-related lesions comparing the 4-valent HPV vaccine versus placebo in 16-26 year old males at 36 months (HPV-naïve population)

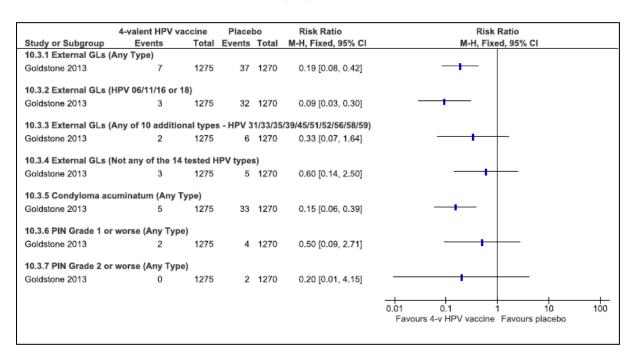


Figure 4.13 Estimate of effect on comparing 4-valent HPV vaccination in persistent infection and/or disease in boys versus girls aged 9 to 15 years from 42 to 96 months (Early Vaccination Group [EVG] ITT Population)

	Males (9-15y)	4-v 3D	Females (9-15y)	4-v 3D	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
12.1.1 HPV 06/11/16	or 18-related per	sistent ir	nfection			
Ferris 2014	2	171	2	240	1.40 [0.20, 9.87]	
12.1.2 HPV 06/11/16	or 18-related per	sistent ir	nfection or diseas	se		
Ferris 2014	2	173	2	256	1.48 [0.21, 10.41]	
						0.05 0.2 1 5 20 Favours males Favours females

Figure 4.14 Estimate of effect on comparing 9-valent and 4-valent HPV vaccination in HPV 6, 11, 16 & 18-related low-grade and high-grade cervical, vaginal and vulvar disease in women 16-26 years at 48 months (modified intention-to-treat population)

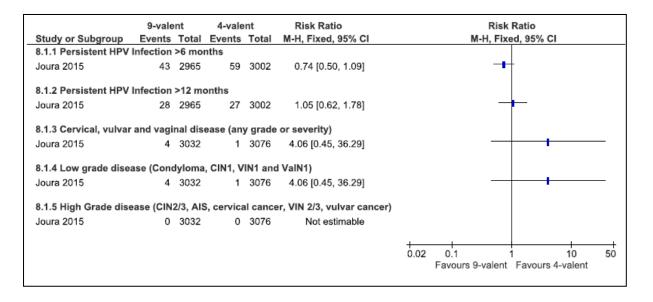


Figure 4.15 Estimate of effect on HPV 31/33/35/39/45/51/52/56/58 or 59-related CIN lesions and AIS comparing the 4-valent HPV vaccine versus placebo in women 16-26 years at 42 months (generally HPV-naïve population)

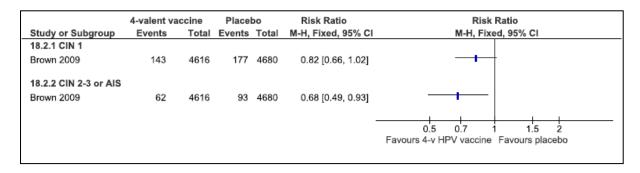


Figure 4.16 Estimate of effect on comparing 4-valent HPV vaccination in HPV 31/33/35/39/45/51/52/56/58 & 59-related persistent infection and external genital lesions in boys versus girls aged 9 to 15 years from 42 to 120 months (Early Vaccination Group [EVG] ITT Population)

	Males (9-15y) 4	-v 3D	Females (9-15y)	4-v 3D	Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI		M-H, Fix	ed, 95% CI	
12.2.1 HPV 31/33/35/3	9/45/51/52/56/58	& 59-rela	ted persistent in	nfection					
Ferris 2017	34	565	90	614	0.41 [0.28, 0.60]		+		
12.2.2 HPV 31/33/35/3	9/45/51/52/56/58	& 59-rela	ted external ger	nital lesion	ns				
Ferris 2017	0	565	2	614	0.22 [0.01, 4.52]		-		
								<u> </u>	
						0.01	0.1 Favours males	1 10 Favours females	100
							r avours maios	1 avours remaies	

Figure 4.17 Estimate of effect on comparing 9-valent and 4-valent HPV vaccination in HPV 31, 33, 45, 52, 58-related low-grade and high-grade cervical, vaginal and vulvar disease in women 16-26 years at 48 months (modified intention-to-treat population)

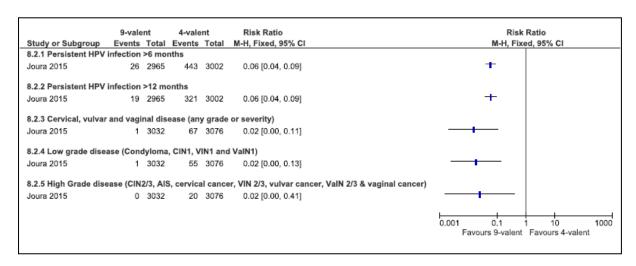


Figure 4.18 Estimate of effect on GMTs for common vaccine HPV types comparing 9-valent and 4-valent HPV vaccination in females 16-26 years from 7 to 42 months (per-protocol population)

			9-valent women	(16-28y)	4-valent women	(16-26y)	GMT Ratio		GMT	Ratio		
Study or Subgroup	log[Risk Ratio]	SE	GMT	Total	GMT	Total	IV, Fixed, 95% CI		IV, Fixe	d, 95% (CI	
7.1.1 HPV 06												
Huh 2017 month 7	0.0198	0.0152	893.1	3993	875.2	3975	1.02 [0.99, 1.05]					
Huh 2017 month 42	0.0198	0.0526	147.2	692	144.3	675	1.02 [0.92, 1.13]		23			
7.1.2 HPV 11												
Huh 2017 month 7	-0.2231	0.0195	666.3	3995	830.0	3982	0.80 [0.77, 0.83]					
Huh 2017 month 42	-0.1985	0.0524	84.9	696	104.0	677	0.82 [0.74, 0.91]		t			
7.1.3 HPV 16												
Huh 2017 month 7	-0.0101	0.0157	3131.1	4032	3156.6	4062	0.99 [0.96, 1.02]					
Huh 2017 month 42	-0.0408	0.0621	346.8	709	362.9	690	0.96 [0.85, 1.08]		9			
7.1.4 HPV 18												
Huh 2017 month 7	0.174	0.0219	893.1	4539	678.7	4541	1.19 [1.14, 1.24]			•		
Huh 2017 month 42	0.157	0.065	147.2	806	60.4	770	1.17 [1.03, 1.33]			t		
									<u>. j </u>		1	-1
								0.005	0.1 Favours 4-valent	1 Favour	10 s 9-valent	200

Figure 4.19 Estimate of effect on comparing seropositivity rates for 9-valent and 4-valent HPV vaccination in females 16-26 years from seven to 42 months (per-protocol population)

	9-valent women (16-26y)	4-valent women	(16-26y)	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
7.2.1 HPV 06						
Huh 2017 month 7	3985	3993	3967	3975	1.00 [1.00, 1.00]	
Huh 2017 month 42	664	692	638	675	1.02 [0.99, 1.04]	•
7.2.2 HPV 11						
Huh 2017 month 7	3994	3995	3978	3982	1.00 [1.00, 1.00]	•
Huh 2017 month 42	664	696	655	677	0.99 [0.97, 1.01]	•
7.2.3 HPV 16						
Huh 2017 month 7	4031	4032	4060	4062	1.00 [1.00, 1.00]	
Huh 2017 month 42	698	709	680	690	1.00 [0.99, 1.01]	(
7.2.4 HPV 18						
Huh 2017 month 7	4532	4539	4528	4541	1.00 [1.00, 1.00]	
Huh 2017 month 42	658	806	593	770	1.06 [1.01, 1.12]	•
7.2.5 HPV 31						
Huh 2017 month 7	4457	4466	2193	4377	1.99 [1.93, 2.05]	1.1
Huh 2017 month 42	733	783	95	730	7.19 [5.96, 8.69]	+
7.2.6 HPV 33						
Huh 2017 month 7	4688	4702	596	4691	7.85 [7.28, 8.46]	t
Huh 2017 month 42	790	835	60	789	12.44 [9.75, 15.88]	+
7.2.7 HPV 45						
Huh 2017 month 7	4773	4792	437	4750	10.83 [9.90, 11.84]	t t
Huh 2017 month 42	667	846	10	802	63.23 [34.12, 117.18]	_
7.2.8 HPV 52						
Huh 2017 month 7	4446	4455	113	4335	38.29 [31.92, 45.93]	+
Huh 2017 month 42	753	791	41	735	17.07 [12.67, 22.99]	+
7.2.9 HPV 58						
Huh 2017 month 7	4477	4486	907	4446	4.89 [4.62, 5.18]	+
Huh 2017 month 42	740	784	42	756	16.99 [12.66, 22.81]	+
						0.01 0.1 1 10
						0.01 0.1 1 10 Favours 4-valent Favours 9-valent

Figure 4.20 Estimate of effect on GMTs for all vaccine HPV types comparing 9-valent and 4-valent HPV vaccination in females aged nine to 15 years at seven months (per-protocol population)

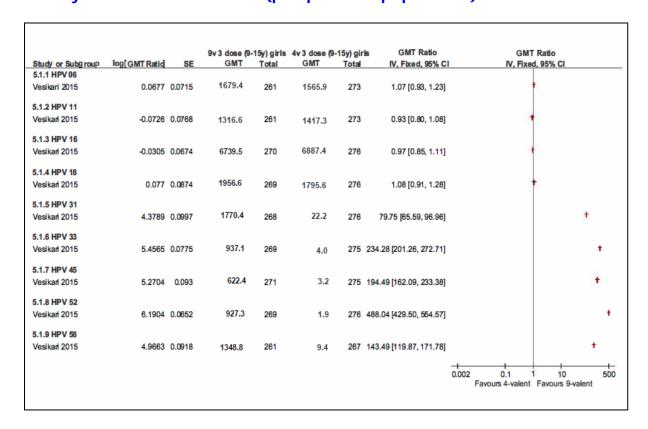


Figure 4.21 Estimate of effect on seropositivity rates for all vaccine HPV types comparing 9-valent and 4-valent HPV vaccination in females aged nine to 15 years at seven months (per-protocol population)

Study or Subgroup	9v 3 dose (9-15) Events	r) girls Total	4v 3 dose (9-15 Events	iy) girls Total	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M-H, Fixed, 95% CI
5.2.1 HPV 06						
Vesikari 2015	273	273	261	261	1.00 [0.99, 1.01]	•
5.2.2 HPV 11						
Vesikari 2015	273	273	261	261	1.00 [0.99, 1.01]	•
5.2.3 HPV 16						
Vesikari 2015	276	276	270	270	1.00 [0.99, 1.01]	•
5.2.4 HPV 18						
Vesikari 2015	276	276	269	269	1.00 [0.99, 1.01]	•
5.2.5 HPV 31						
Vesikari 2015	276	276	197	268	1.36 [1.27, 1.46]	—
5.2.6 HPV 33						
Vesikari 2015	275	275	0	0	Not estimable	
5.2.7 HPV 45						
Vesikari 2015	274	275	0	0	Not estimable	
5.2.8 HPV 52						
Vesikari 2015	276	276	0	0	Not estimable	
5.2.9 HPV 58						
Vesikari 2015	267	267	143	261	1.82 [1.63, 2.03]	_ -
					-	0.5 0.7 1 1.5 2
						0.5 0.7 1 1.5 2 Favours 4-valent Favours 9-valent

Figure 4.22 Estimate of effect on GMTs for all vaccine HPV types comparing 9-valent and 4-valent HPV vaccination in males 16-26 years at seven months (per-protocol population)

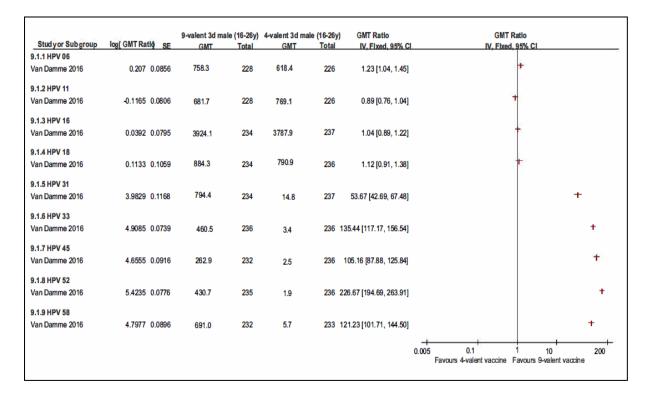


Figure 4.23 Estimate of effect on seropositivity rates for all vaccine HPV types comparing 9-valent and 4-valent HPV vaccination in males 16-26 years at seven months (per-protocol population)

Study or Subgroup	9-valent 3d male (1 Events	16-26y) Total	4-valent 3d male Events	(16-26y) Total	Risk Ratio M-H, Fixed, 95% C	Risk Ratio I M-H, Fixed, 95% CI
9.2.1 HPV 06						
Van Damme 2016	224	228	223	226	1.00 [0.97, 1.02]	<u>†</u>
9.2.2 HPV 11						
Van Damme 2016	228	228	226	226	1.00 [0.99, 1.01]	<u>†</u>
9.2.3 HPV 16						
Van Damme 2016	234	234	237	237	1.00 [0.99, 1.01]	<u>†</u>
9.2.4 HPV 18						
Van Damme 2016	233	234	235	236	1.00 [0.99, 1.01]	<u> </u>
9.2.5 HPV 31						
Van Damme 2016	234	234	146	237	1.62 [1.47, 1.79]	†
9.2.6 HPV 33						
Van Damme 2016	236	236	40	236	5.84 [4.41, 7.73]	+
9.2.7 HPV 45						
Van Damme 2016	232	232	22	236	10.51 [7.09, 15.57]	-
9.2.8 HPV 52						
Van Damme 2016	235	235	6	236	36.38 [17.05, 77.66]	_ -
9.2.9 HPV 58						
Van Damme 2016	232	232	84	233	2.76 [2.33, 3.28]	+
						0.02 0.1 1 10 50
						Favours 4-valent Favours 9-valent

Figure 4.24 Estimate of effect on GMTs for the 4-valent HPV vaccine in males versus females aged nine to 15 years from seven to 96 months (per-protocol population)

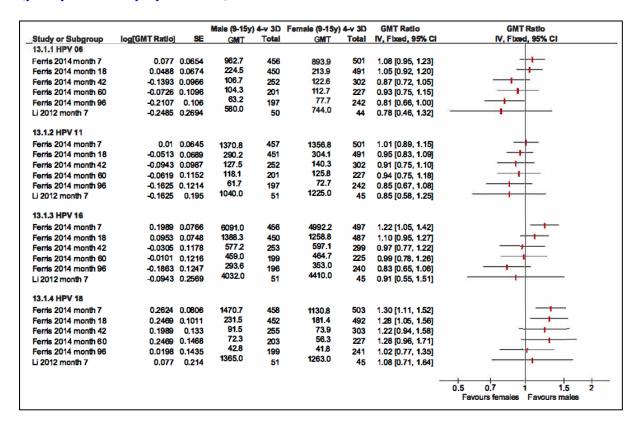


Figure 4.25 Estimate of effect on seropositivity rates for the 4-valent HPV vaccine in males versus females aged nine to 15 years from seven to 18 months (per-protocol population)

turdur on Curlomanum		4-v 3D	Female (9-15y)	4-7 30	Risk Ratio	Risk Ratio
tudy or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.2.1 HPV 06						
eisinger 2007 month 7	455	456	491	492	1.00 [0.99, 1.01]	•
eisinger 2007 month 18	439	449	471	481	1.00 [0.98, 1.02]	†
3.2.2 HPV 11						
eisinger 2007 month 7	456	457	491	492	1.00 [0.99, 1.01]	
eisinger 2007 month 18	447	450	477	481	1.00 [0.99, 1.01]	•
3.2.3 HPV 16						
eisinger 2007 month 7	453	455	488	489	1.00 [0.99, 1.00]	
eisinger 2007 month 18	445	448	477	478	1.00 [0.99, 1.00]	†
3.2.4 HPV 18						
eisinger 2007 month 7	457	458	492	494	1.00 [0.99, 1.01]	
eisinger 2007 month 18	417	451	442	483	1.01 [0.97, 1.05]	†
						0.5 0.7 1 1.5 2 Favours females Favours males

Figure 4.26 Estimate of effect on GMTs for the 9-valent HPV vaccine in males versus females 16-26 years at seven months (per-protocol population)

					Females (16-26		GMT Ratio	GMT Ratio
Study or Subgroup	log GMT Ratio	\$E	GMT	Total	GMT	Total	IV, Fixed, 95% CI	IV, Fixed, 95% CI
16.1.1 HPV 06								
Castellsague 2015	0.1044	0.0431	782.0	847	703.9	708	1.11 [1.02, 1.21]	+
16.1.2 HPV 11								
Castellsague 2015	0.0862	0.044	616.7	851	564.9	712	1.09 [1.00, 1.19]	-
16.1.3 HPV 16								
Castellsague 2015	0.1823	0.0444	3346.0	899	2788.3	781	1.20 [1.10, 1.31]	-
16.1.4 HPV 18								
Castellsague 2015	0.174	0.0495	808.2	906	679.8	831	1.19 [1.08, 1.31]	
16.1.5 HPV 31								
Castellsague 2015	0.2151	0.0474	708.5	908	570.1	826	1.24 [1.13, 1.36]	
16.1.6 HPV 33								
Castellsague 2015	0.1823	0.0444	384.8	901	322.0	853	1.20 [1.10, 1.31]	-
16.1.7 HPV 45								
Castellsague 2015	0.239	0.0551	235.6	909	185.7	871	1.27 [1.14, 1.41]	
16.1.8 HPV 52								
Castell sague 2015	0.1398	0.0464	386.8	907	335.2	849	1.15 [1.05, 1.26]	-
16.1.9 HPV 58								
Castellsague 2015	0.2231	0.047	509.8	897	409.3	839	1.25 [1.14, 1.37]	-
							0.5	0.7 1 1.5
								0.7 1 1.5 avours females Favours males

Figure 4.27 Estimate of effect on seropositivity rates for the 9-valent HPV vaccine in males versus females 16-26 years at seven months (perprotocol population)

C41	Males (16-26y)		Females (16-26y	,	Risk Ratio	Risk Ratio
Study or Subgroup 16.2.1 HPV 06	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Castellsague 2015	844	847	705	708	1.00 [0.99, 1.01]	+
16.2.2 HPV 11 Castellsague 2015	851	851	711	712	1.00 [1.00, 1.01]	
16.2.3 HPV 16 Castellsague 2015	899	899	780	781	1.00 [1.00, 1.00]	
16.2.4 HPV 18	055	033	700	701	1.00 [1.00, 1.00]	
Castellsague 2015	905	906	829	831	1.00 [1.00, 1.01]	
16.2.5 HPV 31 Castellsague 2015	908	908	826	826	1.00 [1.00, 1.00]	
16.2.6 HPV 33 Castellsague 2015	901	901	852	853	1.00 [1.00, 1.00]	
16.2.7 HPV 45 Castellsague 2015	907	909	867	871	1.00 [1.00, 1.01]	
16.2.8 HPV 52 Castellsague 2015	907	907	847	849	1.00 [1.00, 1.01]	
16.2.9 HPV 58 Castellsague 2015	897	897	837	839	1.00 [1.00, 1.01]	
					_	0.850.9 1 1.1 1.2 Favours females Favours males
					_	

Figure 4.28 Estimate of effect on GMTs for the 9-valent HPV vaccine in males versus females aged nine to 15 years from seven to 36 months (per-protocol population)

	log[Risk Ratio]	SE	GMT	Total	GMT	Total	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Van Damme 2015 Month 7 Van Damme 2015 Month 12 Van Damme 2015 Month 24	0.1989							
Van Damme 2015 Month 12 Van Damme 2015 Month 24		0.0436	2084.7	559	1712.0	1597	1.22 [1.12, 1.33]	+
Van Damme 2015 Month 24	0.1133		692.4	491	616.1	437	1.12 [1.01, 1.24]	—
Van Damme 2015 Month 36	0.077	0.0601	336.6	470	312.9	416	1.08 [0.96, 1.22]	+-
Vali Damine 2015 Munti 36	0.0392	0.0626	262.7	457	252.8	407	1.04 [0.92, 1.18]	+-
14.1.2 HPV 11								
Van Damme 2015 Month 7	0.1484	0.0412	1487.1	559	1278.7	1597	1.16 [1.07, 1.26]	+
Van Damme 2015 Month 12	0.1484	0.0606	456.6	495	393.3	439	1.16 [1.03, 1.31]	
Van Damme 2015 Month 24	0.1133	0.0681	201.1	471	179.7	418	1.12 [0.98, 1.28]	
Van Damme 2015 Month 36	0.0677	0.0661	156.6	463	145.8	411	1.07 [0.94, 1.22]	+-
14.1.3 HPV 16								
Van Damme 2015 Month 7	0.1989	0.0391	8628.9	569	7071.6	1627	1.22 [1.13, 1.32]	
Van Damme 2015 Month 12		0.0552	2847.1	505	2428.5	444	1.17 [1.05, 1.30]	—
Van Damme 2015 Month 24	0.101	0.0618	1230.8	481	1078.7	423	1.14 [1.01, 1.29]	—
Van Damme 2015 Month 36	0.0953	0.0695	944.1	472	857.4	416	1.10 [0.96, 1.26]	+-
14.1.4 HPV 18								
Van Damme 2015 Month 7	0.3075		2822.8	567	2081.2	1641	1.36 [1.24, 1.49]	-
Van Damme 2015 Month 12	0.4447		769.2	503	494.1	446	1.56 [1.35, 1.80]	-
Van Damme 2015 Month 24	0.4121		317.3	479	210.2	425	1.51[1.30, 1.75]	
Van Damme 2015 Month 36	0.3784	0.0833	244.2	470	167.8	418	1.46 [1.24, 1.72]	
14.1.5HPV 31								
Van Damme 2015 Month 7	0.1655		2221.2	564	1879.3	1617	1.18 [1.08, 1.29]	-
Van Damme 2015 Month 12	0.1823		689.4	500	574.1	443	1.20 [1.05, 1.37]	
Van Damme 2015 Month 24		0.0786	300.2	476	252.2	421	1.19 [1.02, 1.39]	100
Van Damme 2015 Month 36	0.131	0.0772	246.3	467	216.6	414	1.14 [0.98, 1.33]	
14.1.6 HPV 33								
Van Damme 2015 Month 7	0.239	0.0418	1198.7	567	944.4	1637 441	1.27 [1.17, 1.38]	🛨
Van Damme 2015 Month 12			368.8	503 479	278.2		1.33 [1.18, 1.50]	
Van Damme 2015 Month 24 Van Damme 2015 Month 36	0.27	0.0709	151.5	479	115.6	419	1.31 [1.14, 1.51]	
	02469	0.0727	120.8	4/1	94.1	412	1.28 [1.11, 1.48]	
14.1.7 HPV 45				570		4047	4 00 14 44 4 00	
Van Damme 2015 Month 7 Van Damme 2015 Month 12		0.0524	907.0	506	737.1	1647	1.23 [1.11, 1.36]	
Van Damme 2015 Month 12 Van Damme 2015 Month 24	0.2624		254.1		195.2	448	1.30 [1.11, 1.52]	
	0.2546		99.5	482	77.3	426	1.29 [1.08, 1.54]	
Van Damme 2015 Month 36	0.174	0.0939	76.7	473	64.7	419	1.19 [0.99, 1.43]	21
14.1.8 HPV 52						45.77		
Van Damme 2015 Month 7	0.0677		1037.8	568	970.5	1642	1.07 [0.98, 1.17]	
Van Damme 2015 Month 12	0.0583		313.3	505	295.3	448	1.06 [0.93, 1.21]	
Van Damme 2015 Month 24		0.0645	136.3	481	134.7	426	1.01 [0.89, 1.15]	
Van Damme 2015 Month 36	-0.0408	0.0742	104.9	472	109.6	419	0.96 [0.83, 1.11]	-
14.1.9 HPV 58		00/22		F85		4000	4 00 14 40 4 2 2	
Van Damme 2015 Month 7		0.0433	1567.7	566	1277.7	1630	1.23 [1.13, 1.34]	1 🛨
Van Damme 2015 Month 12	0.2151		526.9	502	424.0	446	1.24 [1.10, 1.40]	
Van Damme 2015 Month 24	0.2151		220.7	478	178.0	424	1.24 [1.08, 1.42]	
Van Damme 2015 Month 36	0.1484	0.0757	170.9	470	147.4	417	1.16[1.00, 1.35]	
							10	5 0.7 1 1.5 2
								Favours females Favours males

Figure 4.29 Estimate of effect on seropositivity rates for the 9-valent HPV vaccine in males versus females aged nine to 15 years from seven to 36 months (per-protocol population)

	Males (9-15y) 9	I-v 3D	Females (9-15y)	9-v 3D	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
14.2.1 HPV 06						
Van Damme 2015 Month 7	558	559	1591	1597	1.00 [1.00, 1.01]	+
Van Damme 2015 Month 12	490	491	436	437	1.00 [0.99, 1.01]	+
Van Damme 2015 Month 24	468	470	413	416	1.00 [0.99, 1.01]	+
Van Damme 2015 Month 36	451	457	401	407	1.00 [0.99, 1.02]	+
14.2.2 HPV 11						
Van Damme 2015 Month 7	559	559	1595	1597	1.00 [1.00, 1.00]	
Van Damme 2015 Month 12	495	495	439	439	1.00 [1.00, 1.00]	•
Van Damme 2015 Month 24	467	471	416	418	1.00 [0.99, 1.01]	4
Van Damme 2015 Month 36	455	463	408	411	0.99 [0.98, 1.00]	-1
14.2.3 HPV 16						
Van Damme 2015 Month 7	569	569	1625	1627	1.00 [1.00, 1.00]	
Van Damme 2015 Month 12	505	505	444	444		1
					1.00 [1.00, 1.00]	<u>I</u>
Van Damme 2015 Month 24	481	481	422	423	1.00 [1.00, 1.01]	1
Van Damme 2015 Month 36	470	472	415	416	1.00 [0.99, 1.01]	Ţ
14.2.4 HPV 18						
Van Damme 2015 Month 7	567	567	1638	1641	1.00 [1.00, 1.00]	Ī.
Van Damme 2015 Month 12	503	503	443	446	1.01 [1.00, 1.02]	<u> † </u>
Van Damme 2015 Month 24	472	479	412	425	1.02 [1.00, 1.04]	<u> </u>
Van Damme 2015 Month 36	454	470	395	418	1.02 [0.99, 1.05]	 -
14.2.5 HPV 31						
Van Damme 2015 Month 7	564	564	1615	1617	1.00 [1.00, 1.00]	•
Van Damme 2015 Month 12	500	500	443	443	1.00 [1.00, 1.00]	†
Van Damme 2015 Month 24	473	476	418	421	1.00 [0.99, 1.01]	+
Van Damme 2015 Month 36	460	467	411	414	0.99 [0.98, 1.01]	+
14.2.6 HPV 33						
Van Damme 2015 Month 7	567	567	1635	1637	1.00 [1.00, 1.00]	•
Van Damme 2015 Month 12	503	503	441	441	1.00 [1.00, 1.00]	+
Van Damme 2015 Month 24	477	479	415	419	1.01 [0.99, 1.02]	+
Van Damme 2015 Month 36	465	471	406	412	1.00 [0.99, 1.02]	+
14.2.7 HPV 45						
Van Damme 2015 Month 7	570	570	1644	1647	1.00 [1.00, 1.00]	•
Van Damme 2015 Month 12	504	506	445	448	1.00 [0.99, 1.01]	
Van Damme 2015 Month 24	460	482	407	426	1.00 [0.97, 1.03]	-
Van Damme 2015 Month 36	440	473	393	419	0.99 [0.96, 1.03]	
14.2.8 HPV 52						
Van Damme 2015 Month 7	568	568	1640	1642	1.00 [1.00, 1.00]	
Van Damme 2015 Month 12	505	505	448	448	1.00 [1.00, 1.00]	
Van Damme 2015 Month 24	478	481	424	426	1.00 [0.99, 1.01]	-
Van Damme 2015 Month 24 Van Damme 2015 Month 36	462	472	424	419		<u> </u>
	402	412	410	418	0.99 [0.97, 1.00]	-
14.2.9 HPV 58	500	FOC	4000	4000	4 00 14 00 4 00	Ĺ
Van Damme 2015 Month 7	566	566	1628	1630	1.00 [1.00, 1.00]	I
Van Damme 2015 Month 12	502	502	446	446	1.00 [1.00, 1.00]	I
Van Damme 2015 Month 24	478	478	423	424	1.00 [1.00, 1.01]	<u>I</u>
Van Damme 2015 Month 36	466	470	413	417	1.00 [0.99, 1.01]	T
					_	0.85 0.9 1 1.1 1.2
						Favours females Favours males

Figure 4.30 Estimate of effect on GMTs comparing two-dose HPV vaccine schedules (females nine-15 years) versus three-dose HPV vaccine schedules (females 15-26 years) at seven months (per-protocol population)

				s 9-15y	3 doses wome	en 15-26y		GMT Ratio		Ratio
Study or Subgroup	log[GMT Ratio	SE	GMT	Total	GMT	Total	Weight	IV, Random, 95% CI	IV, Rand	om, 95% CI
1.1.1 HPV 06	0.0450	0.4005				050		0.0014.04.0.053		
Obson 2013 Jemandez-Avila 2016		0.1205	2186.0 306.2	241 141	938.0 387.3	256 137	34.1% 30.5%	2.33 [1.84, 2.95]		_
versen 2016		0.1941	1657.9	258	387.3 770.9	238	35.4%	0.79 [0.54, 1.16] 2.15 [1.82, 2.54]		
Subtotal (95% CI)	0.7655	0.065	1637.8	640	770.8		100.0%	1.63 [0.98, 2.70]		-
leterogeneity: Tau ² = 0.	18: ChP = 25.16	df = 2 (P <	0.00001): 2			001	100.070	1.00 [0.00, 2.70]		
est for overall effect: Z		u(, .	0.00001,,1	0270						
I.1.2 HPV 11										
Oobson 2013	0.000	0.081	2348.0	243	1277.0	269	35.7%	1.84 [1.57, 2.16]		-
lemandez-Avila 2016		0.1273	968.3	144	629.9	141	28.9%	1.54 [1.20, 1.98]		
versen 2016	0.8713	0.0833	1388.9	258 645	580.5	238	35.4% 100.0%	2.39 [2.03, 2.81]		
Subtotal (95% CI)						048	100.0%	1.92 [1.51, 2.43]		
leterogeneity: Tau ² = 0. [est for overall effect: Z		•	0.007); F = 80	1%						
1.1.3 HPV 16										
Dobson 2013	0.7372	0.1114	7457.0	243	3574.0	246	31.6%	2.09 [1.68, 2.60]		
lemandez-Avila 2016	0.7561	0.1556	5136.7	145	2407.8	141	17.6%	2.13 [1.57, 2.89]		-
versen 2016	0.9322	0.0827	8004.9	272	3154.0	249	50.8%	2.54 [2.16, 2.99]		
Subtotal (95% CI)				660		636	100.0%	2.32 [2.02, 2.65]		•
leterogeneity: Tau ² = 0. Test for overall effect: Z			0.31); l² = 169	6						
1.1.4 HPV 18										
Oobson 2013		0.0981	1207.0	243	661.0	264	34.5%	1.83 [1.51, 2.22]		-
lemandez-Avila 2016		0.1241	605.0	145	343.7	141	29.7%	1.76 [1.38, 2.24]		
versen 2016	0.9002	0.0905	1872.8	272	761.5	267	35.9%	2.46 [2.06, 2.94]		
Subtotal (95% CI) leterogeneity: Tau ² = 0. (set for express offset: 7			0.03); l² = 719	660		672	100.0%	2.01 [1.62, 2.50]		_
est for overall effect: Z	- 6.30 (12 < 0.000	UI)								
1.1.5 HPV 31										-
versen 2016	0.9203	0.091	1436.3	272	572.1		100.0%	2.51 [2.10, 3.00]		
Subtotal (95% CI)				272		264	100.0%	2.51 [2.10, 3.00]		•
leterogeneity: Not appli lest for overall effect: Z		001)								
I.1.6 HPV 33										
versen 2016	1.0852	0.0862	1030.0	273	348.1	279	100.0%	2.96 [2.50, 3.50]		-
Subtotal (95% CI)	1,000	0.000	1000.0	273	Ç10.1		100.0%	2.96 [2.50, 3.50]		
leterogeneity: Not appli	cable							,,		(•
est for overall effect: Z		001)								
1.1.7 HPV 45										_
versen 2016	0.5128	0.0973	357.6	274	213.6		100.0%	1.67 [1.38, 2.02]		
Subtotal (95% CI)				274		280	100.0%	1.67 [1.38, 2.02]		•
leterogeneity: Not appli lest for overall effect: Z		01)								
1.1.8 HPV 52										
versen 2016	0.47	0.0829	581.1	272	364.2	271	100.0%	1.60 [1.36, 1.88]		-
Subtotal (95% CI)	2.41			272			100.0%	1.60 [1.36, 1.88]		-
leterogeneity: Not appli lest for overall effect: Z		01)								2
1.1.9 HPV 58										
versen 2016	0.0264	0.0974	1961.9	270	404.4	264	100.0%	2.55 [2.15, 3.02]		_
versen 2016 Subtotal (95% CI)	0.9361	0.0871	1251.2	270 270	491.1		100.0%	2.55 [2.15, 3.02] 2.55 [2.15, 3.02]		
Heterogeneity: Not appli	rable						100,0070			
est for overall effect: Z		001)								
Out for Overall elled; Z	10.19 (1- > 0.00	551)								
										1 1
									0.2 0.5 3 doses women (15-26)	1 2 5

Figure 4.31 Estimate of effect on seropositivity rates comparing twodose HPV vaccine schedules (females nine-15 years) versus three-dose HPV vaccine schedules (females 15-26 years) at seven months (perprotocol population)

itudy or Subgroup	2 doses girls Events	9-15y 3 Total	doses women 1: Events		Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
.2.1 HPV 06							
Oobson 2013	240	241	255	256	48.2%	1.00 [0.99, 1.01]	•
lernandez-Avila 2016	141	145	137	141	3.9%	1.00 [0.96, 1.04]	+
versen 2016	257	258	237	238	47.9%	1.00 [0.99, 1.01]	•
Subtotal (95% CI)		644		635	100.0%	1.00 [0.99, 1.01]	•
otal events	638		629				
leterogeneity: Tau ² = 0.0			1.00); 2 = 0%				
est for overall effect: Z =	0.02 (P = 0.99	9)					
.2.2 HPV 11							
Oobson 2013	243	243	269	269	62.1%	1.00 [0.99, 1.01]	
lernandez-Avila 2016	144	145	141	141	9.9%	0.99 [0.97, 1.01]	+
versen 2016	258	258	237	238	28.0%	1.00 [0.99, 1.02]	<u>†</u>
ubtotal (95% CI)		646		648	100.0%	1.00 [0.99, 1.01]	•
otal events	645		647				
leterogeneity: Tau² = 0.0 est for overall effect: Z =			0.60); 2 = 0%				
.2.3 HPV 16							
Obson 2013	243	243	246	246	53.1%	1.00 [0.99, 1.01]	•
lernandez-Avila 2016	145	145	141	141	18.2%	1.00 [0.99, 1.01]	∓
versen 2016	272	272	248	249	28.6%	1.00 [0.99, 1.02]	+
subtotal (95% CI)		660		636	100.0%	1.00 [1.00, 1.01]	•
otal events	660		635				
leterogeneity: Tau ² = 0.0	0; Chi ² = 0.43,	df = 2 (P =	0.81); 2 = 0%				
est for overall effect; Z =	0.40 (P = 0.69	9)					
.2.4 HPV 18							
lobson 2013	243	243	264	264	46.0%	1.00 [0.99, 1.01]	•
lernandez-Avila 2016	145	145	141	141	29.8%	1.00 [0.99, 1.01]	₱_
versen 2016	272	272	263	267	24.1%	1.02 [1.00, 1.03]	.
ubtotal (95% CI)		660		672	100.0%	1.00 [0.99, 1.01]	Ť
otal events leterogeneity: Tau² = 0.0	660	44 - 0 /D -	668				
est for overall effect; Z =			0.12), 1 - 33/6				
.2.5 HPV 31							<u> </u>
versen 2016	271	272	263		100.0%	1.00 [0.99, 1.01]	<u>-</u>
subtotal (95% CI)	274	272	000	204	100.0%	1.00 [0.99, 1.01]	Ť
otal events leterogeneity: Not applica	271 able		263				
est for overall effect; Z =		3)					
.2.6 HPV 33							
	070	070	070	070	400.00	4 00 10 00 4 041	<u> </u>
versen 2016 Subtotal (95% CI)	272	273 273	278		100.0%	1.00 [0.99, 1.01] 1.00 [0.99, 1.01]	-
otal events	272	2.0	278	2.0	1001070	ness (elect, nes)	Ī
leterogeneity: Not applica			2.10				
est for overall effect: Z =		9)					
.2.7 HPV 45							
versen 2016	272	274	274	280	100.0%	1.01 [0.99, 1.04]	
Subtotal (95% CI)		274			100.0%	1.01 [0.99, 1.04]	<u>▼</u>
otal events	272		274				
leterogeneity: Not applica							
est for overall effect; Z =		3)					
.2.8 HPV 52							<u> </u>
versen 2016	270	271	271		100.0%	1.00 [0.99, 1.01]	· ·
subtotal (95% CI)		271		272	100.0%	1.00 [0.99, 1.01]	•
otal events	270		271				
leterogeneity: Not applica est for overall effect; Z =		0)					
.2.9 HPV 58							
versen 2016	270	270	260	261	100.0%	1.00 [0.99, 1.01]	<u>•</u>
Subtotal (95% CI)	270	270	200		100.0%	1.00 [0.99, 1.01]	T
otal events	270		260			,,	
leterogeneity: Not applica			200				
est for overall effect: Z =		7)					
							
						0.7 3 de	7 0.85 1 1.2 1.5 ose women (15-26y) 2 dose girls (9-15y)
est for subgroup differen-	ces: Chi ² = 2.3	89, df = 8 (F	e = 0.97), I ² = 0%			0.00	
sector acadiocal amorein							

Figure 4.32 Estimate of effect on GMTs comparing two-dose 4-valent HPV vaccine schedules (females nine-13 years) versus three-dose 4-valent HPV vaccine schedules (females 16-26 years) from seven to 36 months (per-protocol population)

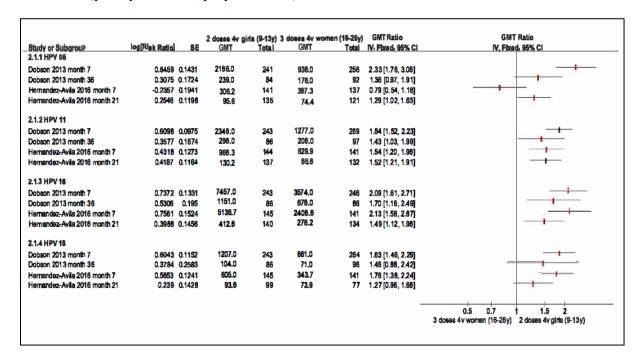


Figure 4.33 Estimate of effect on seropositivity rates comparing twodose 4-valent HPV vaccine schedules (females nine-13 years) versus three-dose 4-valent HPV vaccine schedules (females 16-26 years) from seven to 36 months (per-protocol population)

	2 doses 4v girls	(9-13y)	3 doses 4v women	(16-26y)	Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
2.2.1 HPV 06							
Dobson 2013 month 7	240	241	255	256	1.00 [0.99, 1.01]	†	
Dobson 2013 month 36	84	84	92	92	1.00 [0.98, 1.02]	+	
Hernandez-Avila 2016 month 7	141	145	137	141	1.00 [0.96, 1.04]	+	
Hernandez-Avila 2016 month 21	135	141	121	136	1.08 [1.00, 1.15]	-	
2.2.2 HPV 11							
Dobson 2013 month 7	243	243	269	269	1.00 [0.99, 1.01]	†	
Dobson 2013 month 36	86	86	97	97	1.00 [0.98, 1.02]	+	
Hernandez-Avila 2016 month 7	144	145	141	141	0.99 [0.97, 1.01]	+	
Hernandez-Avila 2016 month 21	137	141	132	136	1.00 [0.96, 1.04]	+	
2.2.3 HPV 16							
Dobson 2013 month 7	243	243	246	246	1.00 [0.99, 1.01]		
Dobson 2013 month 36	86	86	86	86	1.00 [0.98, 1.02]	+	
Hernandez-Avila 2016 month 7	145	145	141	141	1.00 [0.99, 1.01]	+	
Hernandez-Avila 2016 month 21	140	141	134	136	1.01 [0.98, 1.03]	†	
2.2.4 HPV 18							
Dobson 2013 month 7	243	243	264	264	1.00 [0.99, 1.01]		
Dobson 2013 month 36	74	86	76	96	1.09 [0.95, 1.24]	++-	
Hernandez-Avila 2016 month 7	145	145	141	141	1.00 [0.99, 1.01]	+	
Hernandez-Avila 2016 month 21	99	141	77	136	1.24 [1.03, 1.49]		
					_		
						0.7 0.85 1 1.2 1.5	
						Favours 3 dose 4v women Favours 2 dose 4v girls	

Figure 4.34 Estimate of effect on GMTs comparing two-dose versus three-dose HPV vaccine schedules (females nine-14 years) at seven months (per-protocol population)

				•	Three doses girls			Risk Ratio	OMT Ratio
Study or Subgroup	log[0MT Ratio]	SE.	TMO	Total	TMO	Total	Weight	IV, Random, 95% C	N, Random, 95% Cl
4.1.1 HPV 06 Dobson 2013	0.1855	0 4430	2186.0	241	1856.0	248	25.8%	4 40 10 00 4 501	_
Iversen 2016	0.1033		1657.9	258	1496.1		74.2%	1.18 [0.89, 1.56] 1.11 [0.94, 1.31]	
Subtotal (95% CI)	0.1044	0.0010		499			100.0%	1.13 [0.98, 1.30]	T
Heterogeneity: Tau² =	0.00: ChP = 0.13. d	f=1 (P	= 0.71): F = 0%						ľ
Test for overall effect:									
4.1.2 HPV 11									
Dobson 2013	0.1133		2348.0	243	2096.0		40.9%	1.12 [0.92, 1.36]	
wersen 2016	0.0583	0.0835	1388.9	258	1306.3		59.1%	1.06 [0.90, 1.25]	
Subtotal (95% CI)				501		505	100.0%	1.08 [0.96, 1.23]	•
Heterogeneity:Tau² = Test for overall effect:			= 0.67); F = 0%						
4.1.3 HPV 16									
Dobson 2013	-0.0202	0.1385	7457.0	243	7640.0	251	24.2%	0.98 [0.75, 1.28]	+
versen 2016		0.0772	8004.9	272	6996.0	269	75.8%	1.14 [0.98, 1.33]	_
Subtotal (95% CI)				515			100.0%	1.10 [0.96, 1.25]	₹
Heterogeneity; Tau* = Test for overall effect:			= 0.33); P = 0%						
4.1.4 HPV 18									
Dobson 2013	-0.3425	0.1211	1207.0	243	1703.0	252	44.0%	0.71 [0.58, 0.90]	-
Iversen 2016	-0.0943	0.0852	1872.8	272	2049.3	270	56.0%	0.91 [0.77, 1.08]	
Subtotal (95% CI)				515		522	100.0%	0.82 [0.64, 1.04]	•
Heterogeneity; Tau* = Test for overall effect:			= 0.09); P = 64%						
4.1.5 HPV 31									
versen 2016	-0.1985	0.0881	1436.3	272	1748.3		100.0%	0.82 [0.69, 0.97]	
Subtotal (95% CI)				272		271	100.0%	0.82 [0.69, 0.97]	▼
Helerogenetty: Not app Test for overall effect;									
4.1.6 HPV 33									
Iversen 2016	0.2546	0.0813	1030.3	273	796.4	275	100.0%	1.29 [1.10, 1.51]	
Subtotal (95% CI)			100010	273			100.0%	1.29 [1.10, 1.51]	
Heterogeneity: Not app Test for overall effect		2)							
4.1.7 HPV 45									_
wersen 2018	-0.6182	0.093	357.6	274	661.7	275	100.0%	0.54 [0.45, 0.85]	
Subtotal (95% CI)				274	VI.1	275	100.0%	0.54 [0.45, 0.65]	•
Heterogeneity; Not app Test for overall effect:		01)							
4.1.8 HPV 52									
versen 2016	-0.4463	0.0773	581.1	272	909.9	275	100.0%	0.64 [0.55, 0.74]	
Subtotal (95% CI)				272		275	100.0%	0.64 [0.55, 0.74]	
Heterogenetty: Not app Test for overall effect;		001)							
4.1.9 HPV 58									
Iversen 2016	0.0198	0.0812	1251.2	270	1229.3	273	100.0%	1.02 [0.87, 1.20]	
Subtotal (95% CI)				270		273	100.0%	1.02 [0.87, 1.20]	
Heterogeneity: Not app	picable							_	
Test for overall effect	Z = 0.24 (P = 0.81)								
									<u>, , , , , , , , , , , , , , , , , , , </u>
									0.02 0.1 1 10
Total for sub-room des		- 4	/D +0 0000+1 ==	-04 70					3 doses girls (9-15y) 2 doses girls (9-15y)
Local for SUPPLING AREA	rences: Chr = 96.6	n.of=8	ro <0.000011 P	= 517.7%					

Figure 4.35 Estimate of effect on seropositivity rates comparing twodose versus three-dose HPV vaccine schedules (females nine-14 years) at seven months (per-protocol population)

Two Study or Subgroup	doses girls Events	(9-15y) Th Total	ree doses girls Events		Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
I.2.1 HPV 06						,,	
Dobson 2013	240	241	248	248	57.8%	1.00 [0.98, 1.01]	•
versen 2016	257	258	252	254	42.2%	1.00 [0.99, 1.02]	,
Subtotal (95% CI)		499		502	100.0%	1.00 [0.99, 1.01]	1
Total events	497		500				
Heterogeneity: Tau ^z = 0.00; Fest for overall effect: Z = 0.			5); I² = 0%				
4.2.2 HPV 11							
Dobson 2013	243	243	251	251	65.3%	1.00 [0.99, 1.01]	<u> </u>
versen 2016	258	258	253	254	34.7%	1.00 [0.99, 1.01]	T .
Subtotal (95% CI)	200	501	200		100.0%	1.00 [0.99, 1.01]	1
Total events	501		504				
Heterogeneity: Tau ^z = 0.00; Fest for overall effect: Z = 0.			4); I² = 0%				
1.2.3 HPV 16							
Dobson 2013	243	243	251	251	45.5%	1.00 [0.99, 1.01]	•
versen 2016	272	272	269	269	54.5%	1.00 [0.99, 1.01]	•
Subtotal (95% CI)		515		520	100.0%	1.00 [0.99, 1.01]	1
Total events	515		520				
leterogeneity: Tau² = 0.00; [est for overall effect: Z = 0.		f = 1 (P = 1.0	0); I ² = 0%				
4.2.4 HPV 18							
Dobson 2013	243	243	252	252	62.7%	1.00 (0.00. 1.01)	<u> </u>
versen 2016	272	243	269	252	37.3%	1.00 [0.99, 1.01] 1.00 [0.99, 1.01]	T
Subtotal (95% CI)	212	515	203		100.0%	1.00 [1.00, 1.01]	ī
Total events	515		521				1
Heterogeneity: Tau ² = 0.00;		f = 1 (P = 0.5					
Fest for overall effect: Z = 0.							
4.2.5 HPV 31							<u></u>
versen 2016	271	272	271		100.0%	1.00 [0.99, 1.01]	·
Subtotal (95% CI)		272		271	100.0%	1.00 [0.99, 1.01]	•
Total events	271		271				
Heterogeneity: Not applicab Test for overall effect: Z = 0.							
4.2.6 HPV 33							
versen 2016	272	273	275	275	100.0%	1.00 [0.99, 1.01]	
Subtotal (95% CI)	2.72	273	2.10		100.0%	1.00 [0.99, 1.01]	₹
Total events	272		275			,	1
Heterogeneity: Not applicablest for overall effect: Z = 0.	e						
4.2.7 HPV 45	0.70	07.	270		100 011	4 00 10 00 4 04	<u> </u>
versen 2016	272	274	273		100.0%	1.00 [0.99, 1.01]	
Subtotal (95% CI)	0.70	274	272	2/5	100.0%	1.00 [0.99, 1.01]	₹
Fotal events Heterogonoltic Not applicable	272		273				
Heterogeneity: Not applicab Fest for overall effect: Z = 0.							
4.2.8 HPV 52							
versen 2016	271	272	274	275	100.0%	1.00 [0.99, 1.01]	<u> </u>
Subtotal (95% CI)	4/1	272	214		100.0%	1.00 [0.99, 1.01]	T
Fotal events	271		274	2.0		terest treat	1
leterogeneity: Not applicable			214				
est for overall effect: Z = 0.							
4.2.9 HPV 58							<u></u>
versen 2016	270	270	272		100.0%	1.00 [0.99, 1.01]	"
Subtotal (95% CI)		270		273	100.0%	1.00 [0.99, 1.01]	†
otal events	270		272				
leterogeneity: Not applicable							
est for overall effect: Z = 0.	70 (P = 0.48)						
						_	0.7 0.85 1 1.2 3 dose girls (9-15y) 2 dose girls (9-15y)
Test for subgroup difference	s: Chi² = 1.88	df = 8 (P = 0)).98), I ^z = 0%				2 mae gille (2-13y) 2 mae gille (2-13y)

Figure 4.36 Estimate of effect on GMTs comparing two-dose versus three-dose HPV vaccine schedules (females nine-13 years) from seven to 36 months (per-protocol population)

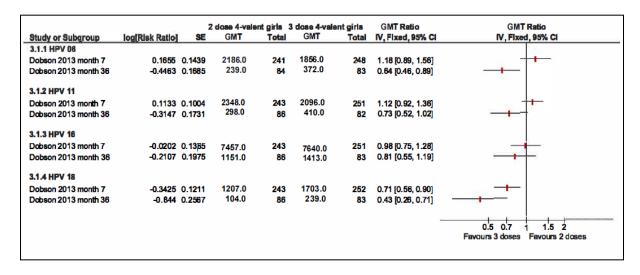


Figure 4.37 Estimate of effect on seropositivity rates comparing twodose versus three-dose HPV vaccine schedules (females nine-13 years) from seven to 36 months (per-protocol population)

	2 dose 4-vale	nt girls	3 dose 4-vale	nt girls	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.2.1 HPV 06						
Dobson 2013 month 7	240	241	248	248	1.00 [0.98, 1.01]	· •
Dobson 2013 month 36	84	84	83	83	1.00 [0.98, 1.02]	†
3.2.2 HPV 11						
Dobson 2013 month 7	243	243	251	251	1.00 [0.99, 1.01]	!
Dobson 2013 month 36	86	86	82	82	1.00 [0.98, 1.02]	†
3.2.3 HPV 16						
Dobson 2013 month 7	243	243	251	251	1.00 [0.99, 1.01]	!
Dobson 2013 month 36	86	86	83	83	1.00 [0.98, 1.02]	†
3.2.4 HPV 18						
Dobson 2013 month 7	243	243	252	252	1.00 [0.99, 1.01]	.
Dobson 2013 month 36	74	86	79	83	0.90 [0.82, 1.00]	
						
						0.5 0.7 1 1.5 2 Favours 3 doses Favours 2 doses

Appendix 4.4 Supplementary summary of findings tables

Table 4.33 Immunogenicity outcomes (GMTs and seropositivity rates) for 9-valent HPV vaccine compared to 4-valent HPV vaccine in 16 to 26 year old females at seven and 42 months

Outcomes		Absolute effects (95%	CI)	Relative effect	№ of	Certainty of the	
		4-valent vaccine	9-valent vaccine	(95% CI)	participants (studies)	evidence (GRADE)	
GMTs - HPV 06	Huh 2017 month 7	875.2 mMU/mL (854.2 – 896.8)	893.1 mMU/mL (871.7 – 915.1)	GMT Ratio 1.02 (0.99 to 1.05)	7968 (1 RCT) ⁽²²²⁾	ФФФФ HIGH	
	Huh 2017 month 42	144.3 mMU/mL (134.5 – 154.8)	147.2 mMU/mL (137.3 – 157.8)	GMT Ratio 1.02 (0.92 to 1.13)	1367 (1 RCT) ⁽²²²⁾)	⊕⊕⊕○ MODERATE ª	
GMTs - HPV 11	Huh 2017 month 7	830.0 mMU/mL (809.2 – 851.4)	666.3 mMU/mL (649.6 – 683.4)	GMT Ratio 0.80 (0.77 to 0.83)	7977 (1 RCT) ⁽²²²⁾	ФФФ HIGH	
	Huh 2017 month 42	104.0 mMU/mL (96.7 – 111.9)	84.9 mMU/mL (79.0 – 91.3)	GMT Ratio 0.82 (0.74 to 0.91)	1373 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª	
GMTs - HPV 16	Huh 2017 month 7	3156.6 mMU/mL (3082.3 – 3232.7)	3131.1 mMU/mL (3057.1 – 3206.9)	GMT Ratio 0.99 (0.96 to 1.02)	8094 (1 RCT) ⁽²²²⁾	ФФФФ HIGH	
	Huh 2017 month 42	362.9 mMU/mL (333.8 – 394.6)	346.8 mMU/mL (319.3 – 376.7)	GMT Ratio 0.96 (0.85 to 1.08)	1399 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª	
GMTs - HPV 18	Huh 2017 month 7	678.7 mMU/mL (660.2 – 697.7)	804.6 mMU/mL (782.7 – 827.1)	GMT Ratio 1.19 (1.14 to 1.24)	9080 (1 RCT) ⁽²²²⁾	ФФФФ HIGH	
	Huh 2017 month 42	60.4 mMU/mL (55.2 – 66.1)	70.8 mMU/mL (64.8 – 77.3)	GMT Ratio 1.17 (1.03 to 1.33)	1576 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ^a	
GMTs - HPV 31	Huh 2017 month 7	9.7 mMU/mL (9.4 – 10.1)	658.4 mMU/mL (636.7 – 680.9)	GMT Ratio 67.88 (64.6 to 71.3)	8843 (1 RCT) ⁽²²²⁾	ФФФ HIGH	
	Huh 2017 month 42	<4 mMU/mL (<4 - <4)	70.4 mMU/mL (65.3 – 75.9)	Not estimable	1513 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª	
GMTs - HPV 33	Huh 2017 month 7	<4 mMU/mL (<4 - <4)	415.9 mMU/mL (405.6 – 426.4)	Not estimable	9393 (1 RCT) ⁽²²²⁾	ФФФФ HIGH	
	Huh 2017 month 42	<4 mMU/mL (<4 - <4)	44.3 mMU/mL (41.6 – 47.1)	Not estimable	1624 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª	
GMTs - HPV 45	Huh 2017 month 7	<3 mMU/mL (<3 - <3)	252.8 mMU/mL (246.2 – 259.6)	Not estimable	9542 (1 RCT) ⁽²²²⁾	ФФФФ HIGH	
	Huh 2017 month 42	<3 mMU/mL (<3 - <3)	21.1 mMU/mL (19.8 – 22.5)	Not estimable	1648 (1 RCT) ⁽²²²⁾	ФФФ MODERATE a	

Outcomes		Absolute effects (95% CI)		Relative effect	№ of	Certainty of the
		4-valent vaccine	9-valent vaccine	(95% CI)	participants (studies)	evidence (GRADE)
GMTs - HPV 52	Huh 2017 month 7	<3 mMU/mL (<3 - <3)	379.7 mMU/mL (371.6 – 388.0)	Not estimable	8790 (1 RCT) ⁽²²²⁾	⊕⊕⊕⊕ нісн
	Huh 2017 month 42	<3 mMU/mL (<3 - <3)	43.2 mMU/mL (40.6 – 46.0)	Not estimable	1526 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª
GMTs - HPV 58	Huh 2017 month 7	<4 mMU/mL (<4 - <4)	482.5 mMU/mL (469.9 – 495.3)	Not estimable	8932 (1 RCT) ⁽²²²⁾	⊕⊕⊕⊕ HIGH
	Huh 2017 month 42	<4 mMU/mL (<4 - <4)	52.0 mMU/mL (48.7 – 55.6)	Not estimable	1540 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª
Seropositivity - HPV 06	Huh 2017 month 7	3967/3975 (99.8%) (99.7 – 99.9%)	3985/3993 (99.8%) (99.6 – 99.9%)	RR 1.00 (1.00 to 1.00)	7968 (1 RCT) ⁽²²²⁾	ФФФФ HIGH
	Huh 2017 month 42	638/675 (94.5%) (92.5 – 96.1%)	664/692 (95.5%) (93.7 – 96.9%)	RR 1.02 (0.99 to 1.04)	1367 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª
Seropositivity - HPV 11	Huh 2017 month 7	3978/3982 (99.9%) (99.8 – 100%)	3994/3995 (100%) (99.9 – 100%)	RR 1.00 (1.00 to 1.00)	7977 (1 RCT) ⁽²²²⁾	ФФФФ HIGH
	Huh 2017 month 42	655/677 (96.8%) (95.1 – 98.0%)	664/696 (95.4%) (93.6 – 96.8%)	RR 0.99 (0.97 to 1.01)	1373 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª
Seropositivity - HPV 16	Huh 2017 month 7	4060/4062 (100%) (99.8 – 100%)	4031/4032 (100%) (99.9 – 100%)	RR 1.00 (1.00 to 1.00)	8094 (1 RCT) ⁽²²²⁾	ФФФФ HIGH
	Huh 2017 month 42	680/690 (98.6%) (97.4 – 99.3%)	698/709 (98.4%) (97.2 – 99.2%)	RR 1.00 (0.99 to 1.01)	1399 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ^a
Seropositivity - HPV 18	Huh 2017 month 7	4528/4541 (99.7%) (99.5 – 99.8%)	4532/4539 (99.8%) (99.7 – 99.9%)	RR 1.00 (1.00 to 1.00)	9080 (1 RCT) ⁽²²²⁾	⊕⊕⊕⊕ HIGH
	Huh 2017 month 42	593/770 (77.0%) (73.9 – 79.9%)	658/806 (81.6%) (78.8 – 84.3%)	RR 1.06 (1.01 to 1.12)	1576 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª
Seropositivity - HPV 31	Huh 2017 month 7	2193/4377 (50.1%) (48.7 – 51.6%)	4457/4466 (99.8%) (99.6 – 99.9%)	RR 1.99 (1.93 to 2.05)	8843 (1 RCT) ⁽²²²⁾	⊕⊕⊕⊕ HIGH
	Huh 2017 month 42	95/730 (13.0%) (10.7 – 15.7%)	733/783 (93.6%) (91.7 – 95.2%)	RR 7.19 (5.96 to 8.69)	1513 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª
Seropositivity - HPV 33	Huh 2017 month 7	596/4691 (12.7%) (11.8 – 13.7%)	4688/4702 (99.7%) (99.5 – 99.9%)	RR 7.85 (7.28 to 8.46)	9393 (1 RCT) ⁽²²²⁾	⊕⊕⊕ HIGH
	Huh 2017 month 42	60/789 (7.6%) (5.9 – 9.7%)	790/835 (94.6%) (92.9 – 96.0%)	RR 12.44 (9.75 to 15.88)	1624 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ª

Outcomes		Absolute effects (95% CI)		Relative effect	№ of	Certainty of the
		4-valent vaccine	9-valent vaccine	(95% CI)	participants (studies)	evidence (GRADE)
Seropositivity - HPV 45	Huh 2017 month 7	437/4750 (9.2%) (8.4 – 10.0%)	4773/4792 (99.6%) (99.4 – 99.8%)	RR 10.83 (9.90 to 11.84)	9542 (1 RCT) ⁽²²²⁾	⊕⊕⊕⊕ HIGH
	Huh 2017 month 42	10/802 (1.2%) (0.6 – 2.3%)	667/846 (78.8%) (75.9 – 81.5%)	RR 63.23 (34.12 to 117.18)	1648 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ^a
Seropositivity - HPV 52	Huh 2017 month 7	113/4335 (2.6%) (2.2 – 3.1%)	4446/4455 (99.8%) (99.6 – 99.9%)	RR 38.29 (31.92 to 45.93)	8790 (1 RCT) ⁽²²²⁾	ФФФФ HIGH
	Huh 2017 month 42	41/735 (5.6%) (4.0 – 7.5%)	753/791 (95.2%) (93.5 – 96.6%)	RR 17.07 (12.67 to 22.99)	1526 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ^a
Seropositivity - HPV 58	Huh 2017 month 7	907/4446 (20.4%) (19.2 – 21.6%)	4477/4486 (99.8%) (99.6 – 99.9%)	RR 4.89 (4.62 to 5.18)	8932 (1 RCT) ⁽²²²⁾	ФФФФ HIGH
	Huh 2017 month 42	42/756 (5.6%) (4.0 – 7.4%)	740/784 (94.4%) (92.5 – 95.9%)	RR 16.99 (12.66 to 22.81)	1540 (1 RCT) ⁽²²²⁾	⊕⊕⊕○ MODERATE ^a

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). (222) Huh 2017. a. Downgraded one level for risk of bias: high loss to follow up

Table 4.34 Immunogenicity outcomes (GMTs and seropositivity rates) for 9-valent HPV vaccine compared to 4-valent HPV vaccine in 9 to 15 year old females at seven months

Outcomes	Absolute effects (95% CI)		Relative effect	№ of participants	Certainty of the	
	4-valent vaccine	9-valent vaccine	(95% CI)	(studies)	evidence (GRADE)	
GMTs - HPV 06	1565.9 mMU/mL	1679.4 mMU/mL (1518.9 – 1856.9)	RR 1.07	534	ФФФФ	
Follow up: 7 months	(1412.2 – 1736.3)		(0.93 to 1.23)	(1 RCT) ⁽²⁴⁹⁾	HIGH	
GMTs - HPV 11	1417.3 mMU/mL	1315.6 mMU/mL (1183.8 – 1462.0)	RR 0.93	534	⊕⊕⊕⊕	
Follow up: 7 months	(1274.2 – 1576.5)		(0.80 to 1.08)	(1 RCT) ⁽²⁴⁹⁾	HIGH	
GMTs - HPV 16	6887.4 mMU/mL	6739.5 mMU/mL (6134.5 – 7404.1)	RR 0.97	546	⊕⊕⊕⊕	
Follow up: 7 months	(6220.8 – 7625.5)		(0.85 to 1.11)	(1 RCT) ⁽²⁴⁹⁾	HIGH	
GMTs - HPV 18	1795.6 mMU/mL	1956.6 mMU/mL (1737.3 – 2203.7)	RR 1.08	545	⊕⊕⊕⊕	
Follow up: 7 months	(1567.2 – 2057.3)		(0.91 to 1.28)	(1 RCT) ⁽²⁴⁹⁾	HIGH	
GMTs - HPV 31	22.2 mMU/mL	1770.4 mMU/mL (1585.7 – 1976.6)	RR 79.75	544	ФФФ	
Follow up: 7 months	(18.9 – 26.1)		(65.59 to 96.96)	(1 RCT) ⁽²⁴⁹⁾	HIGH	
GMTs - HPV 33	4 mMU/mL	937.1 mMU/mL (845.3 – 1038.9)	RR 234.28	544	⊕⊕⊕○	
Follow up: 7 months	(3.6 – 4.5)		(201.26 to 272.71)	(1 RCT) ⁽²⁴⁹⁾	MODERATE ª	
GMTs - HPV 45	3.2 mMU/mL	622.4 mMU/mL (545.4 – 710.2)	RR 194.49	546	⊕⊕⊕○	
Follow up: 7 months	(2.8 – 3.6)		(162.09 to 233.38)	(1 RCT) ⁽²⁴⁹⁾	MODERATE ^a	
GMTs - HPV 52	1.9 mMU/mL	927.3 mMU/mL (837.5 – 1026.9)	RR 488.04	545	⊕⊕⊕○	
Follow up: 7 months	(1.8 – 2.1)		(429.50 to 554.57)	(1 RCT) ⁽²⁴⁹⁾	MODERATE ^a	
GMTs - HPV 58	9.4 mMU/mL	1348.8 mMU/mL (1218.3 – 1493.2)	RR 143.49	528	ФФФФ	
Follow up: 7 months	(8.1 – 10.9)		(119.87 to 171.78)	(1 RCT) ⁽²⁴⁹⁾	HIGH	
Seropositivity - HPV 06 Follow up: 7 months	261/261 (100%)	273/273 (100%)	RR 1.00 (0.99 to 1.01)	534 (1 RCT) ⁽²⁴⁹⁾	ФФФФ HIGH	
Seropositivity - HPV 11 Follow up: 7 months	261/261 (100%)	273/273 (100%)	RR 1.00 (0.99 to 1.01)	534 (1 RCT) ⁽²⁴⁹⁾	ФФФФ HIGH	
Seropositivity - HPV 16 Follow up: 7 months	270/270 (100%)	276/276 (100%)	RR 1.00 (0.99 to 1.01)	546 (1 RCT) ⁽²⁴⁹⁾	ФФФФ HIGH	
Seropositivity - HPV 18 Follow up: 7 months	269/269 (100%)	276/276 (100%)	RR 1.00 (0.99 to 1.01)	545 (1 RCT) ⁽²⁴⁹⁾	ФФФ HIGH	

Outcomes	Absolute effects (95% CI)		Relative effect	№ of participants	Certainty of the
	4-valent vaccine	9-valent vaccine	(95% CI)	(studies)	evidence (GRADE)
Seropositivity - HPV 31 Follow up: 7 months	197/268 (73.5%)	276/276 (100%)	RR 1.36 (1.27 to 1.46)	544 (1 RCT) ⁽²⁴⁹⁾	⊕⊕⊕⊕ HIGH
Seropositivity - HPV 33 Follow up: 7 months	Not reported	275/275 (100%)	Not estimable	275 (1 RCT) ⁽²⁴⁹⁾	⊕⊕⊕⊖ MODERATE ^a
Seropositivity - HPV 45 Follow up: 7 months	Not reported	274/275 (99.6%)	Not estimable	275 (1 RCT) ⁽²⁴⁹⁾	⊕⊕⊕○ MODERATE ª
Seropositivity - HPV 52 Follow up: 7 months	Not reported	276/276 (100%)	Not estimable	276 (1 RCT) ⁽²⁴⁹⁾	⊕⊕⊕⊖ MODERATE ^a
Seropositivity - HPV 58 Follow up: 7 months	143/261 (54.8%)	267/267 (100%)	RR 1.82 (1.63 to 2.03)	528 (1 RCT) ⁽²⁴⁹⁾	⊕⊕⊕⊕ HIGH

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). (249) Vesikari 2015 a. Downgraded one level for risk of bias: selective reporting of results. The paper did not report the complete set of seropositivity rates for non-vaccine HPV types of the 4-valent vaccine, i.e. no results provided for HPV 33/45/52 and only text results provided for HPV 31 and 58.

Table 4.35 Immunogenicity outcomes (GMTs and seropositivity rates) for 9-valent HPV vaccine compared to 4-valent HPV vaccine in 16 to 26 year old males at seven months

Outcomes	Absolute effects (95	% CI)	Relative effect	№ of participants	Certainty of the
	4-valent vaccine	9-valent vaccine	(95% CI)	(studies)	evidence (GRADE)
GMTs - HPV 06	618.4 mMU/mL	758.3 mMU/mL (665.9 – 863.4)	GMT Ratio 1.23	454	⊕⊕⊕⊕
Follow up: 7 months	(554.0 – 690.3)		(1.04 to 1.45)	(1 RCT) ⁽²⁴⁸⁾	нісн
GMTs - HPV 11	769.1 mMU/mL	681.7 mMU/mL (608.9 – 763.4)	GMT Ratio 0.89	454	ФФФФ
Follow up: 7 months	(683.5 – 865.3)		(0.76 to 1.04)	(1 RCT) ⁽²⁴⁸⁾	HIGH
GMTs - HPV 16	3787.9 mMU/mL	3924.1 mMU/mL (3513.8 – 4382.3)	GMT Ratio 1.04	471	ФФФФ
Follow up: 7 months	(3378.4 – 4247.0)		(0.89 to 1.21)	(1 RCT) ⁽²⁴⁸⁾	HIGH
GMTs - HPV 18	790.9 mMU/mL	884.3 mMU/mL	GMT Ratio 1.12 (0.91 to 1.37)	470	ФФФФ
Follow up: 7 months	(683.0 – 915.7)	(766.4 – 1020.4)		(1 RCT) ⁽²⁴⁸⁾	HIGH
GMTs - HPV 31	14.8 mMU/mL	794.4 mMU/mL (694.2 – 909.2)	GMT Ratio 53.67	471	ФФФФ
Follow up: 7 months	(12.5 – 17.5)		(42.69 to 67.48)	(1 RCT) ⁽²⁴⁸⁾	HIGH
GMTs - HPV 33	3.4 mMU/mL	460.5 mMU/mL (410.6 – 516.4)	GMT Ratio 135.44	472	ФФФФ
Follow up: 7 months	(3.1 – 3.7)		(117.17 to 156.54)	(1 RCT) ⁽²⁴⁸⁾	HIGH
GMTs - HPV 45	2.5 mMU/mL	262.9 mMU/mL (226.2 – 305.5)	GMT Ratio 105.16	468	ФФФФ
Follow up: 7 months	(2.3 – 2.8)		(87.88 to 125.84)	(1 RCT) ⁽²⁴⁸⁾	HIGH
GMTs - HPV 52	1.9 mMU/mL	430.7 mMU/mL (377.8 – 491.0)	GMT Ratio 226.67	471	ФФФФ
Follow up: 7 months	(1.8 – 2.1)		(194.69 to 263.91)	(1 RCT) ⁽²⁴⁸⁾	HIGH
GMTs - HV 58	5.7 mMU/mL	691.0 mMU/mL (614.9 – 776.5)	GMT Ratio 121.23	465	ФФФФ
follow up: 7 months	(5.0 – 6.5)		(101.71 to 144.50)	(1 RCT) ⁽²⁴⁸⁾	HIGH
Seropositivity - HPV 06	223/226 (98.7%)	224/228 (98.2%) (95.6 – 99.5%)	RR 1.00	454	ФФФФ
Follow up: 7 months	(96.2 – 99.7%)		(0.97 to 1.02)	(1 RCT) ⁽²⁴⁸⁾	HIGH
Seropositivity - HPV 11	226/226 (100%)	228/228 (100%) (98.4 – 100%)	RR 1.00	454	ФФФФ
Follow up: 7 months	(98.4 – 100%)		(0.99 to 1.01)	(1 RCT) ⁽²⁴⁸⁾	HIGH
Seropositivity - HPV 16	237/237 (100%)	234/234 (100%) (98.4 – 100%)	RR 1.00	471	ФФФФ
Follow up: 7 months	(98.5 – 100%)		(0.99 to 1.01)	(1 RCT) ⁽²⁴⁸⁾	HIGH
Seropositivity - HPV 18	235/236 (99.6%)	233/234 (99.6%) (97.6 – 100%)	RR 1.00	470	ФФФФ
Follow up: 7 months	(97.7 – 100%)		(0.99 to 1.01)	(1 RCT) ⁽²⁴⁸⁾	HIGH
Seropositivity - HPV 31	146/237 (61.6%)	234/234 (100%) (98.4 – 100%)	RR 1.62	471	⊕⊕⊕⊕
Follow up: 7 months	(55.1 – 67.8%)		(1.47 to 1.79)	(1 RCT) ⁽²⁴⁸⁾	нісн

Outcomes	Absolute effects (95%	CI)	Relative effect	№ of participants	Certainty of the
	4-valent vaccine	9-valent vaccine	(95% CI) (studies)		evidence (GRADE)
Seropositivity - HPV 33	40/236 (16.9%)	236/236 (100%) (98.4 – 100%)	RR 5.84	472	⊕⊕⊕⊕
Follow up: 7 months	(12.4 – 22.4%)		(4.41 to 7.73)	(1 RCT) ⁽²⁴⁸⁾	ніGн
Seropositivity - HPV 45	22/236 (9.3%)	232/232 (100%) (98.4 – 100%)	RR 10.51	468	ФФФФ
Follow up: 7 months	(5.9 – 13.8%)		(7.09 to 15.57)	(1 RCT) ⁽²⁴⁸⁾	HIGH
Seropositivity - HPV 52	6/236 (2.5%)	235/235 (100%) (98.4 – 100%)	RR 36.38	471	ФФФФ
Follow up: 7 months	(0.9 – 5.5%)		(17.05 to 77.66)	(1 RCT) ⁽²⁴⁸⁾	HIGH
Seropositivity - HPV 58	84/233 (36.1%)	232/232 (100%) (98.4 – 100%)	RR 2.76	465	ФФФФ
Follow f up: 7 months	(29.9 – 42.6%)		(2.33 to 3.28)	(1 RCT) ⁽²⁴⁸⁾	HIGH

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). (248) Van Damme 2016

Table 4.36 Immunogenicity outcomes for the 4-valent HPV vaccine in nine to 15 year old males compared to nine to 15 year old females to seven, 18 and 96 months

Outcomes		Absolute effects (95%	S CI)	Relative effect	Nº of	Certainty of the	
		9 to 15 year old females	9 to 15 year old males	(95% CI)	participants (studies)	evidence (GRADE)	
GMTs - HPV 6	Ferris 2014 month 7	893.9 mMU/mL (818.7 – 976.0)	962.7 mMU/mL (874.2 – 1060.1)	GMT Ratio 1.08 (0.95 to 1.23)	957 (1 RCT) ⁽²¹⁹⁾	⊕○○ VERY LOW b, d, e	
	Ferris 2014 month 96	77.7 mMU/mL (67.9 – 89.0)	63.2 mMU/mL (53.9 – 74.0)	GMT Ratio 0.81 (0.66 to 1.00)	439 (1 RCT) ⁽²¹⁹⁾	⊕○○○ VERY LOW ^{d, e}	
GMTs - HPV 11	Ferris 2014 month 7	1356.8 mMU/mL (1245.1 – 1478.6)	1370.8 mMU/mL (1249.6 – 1503.8)	GMT Ratio 1.01 (0.89 to 1.15)	958 (1 RCT) ⁽²¹⁹⁾	⊕○○○ VERY LOW b, d, e	
	Ferris 2014 month 96	72.7 mMU/mL (61.8 – 85.5)	61.7 mMU/mL (51.6 – 73.8)	GMT Ratio 0.85 (0.67 to 1.08)	439 (1 RCT) ⁽²¹⁹⁾	⊕○○○ VERY LOW d, e	
GMTs - HPV 16	Ferris 2014 month 7	4992.2 mMU/mL (4501.9 – 5535.9)	6091.0 mMU/mL (5447.0 – 6811.0)	GMT Ratio 1.22 (1.05 to 1.42)	953 (1 RCT) ⁽²¹⁹⁾	⊕○○○ VERY LOW b, e	
	Ferris 2014 month 96	353.0 mMU/mL (303.1 – 411.0)	293.6 mMU/mL (240.5 – 358.4)	GMT Ratio 0.83 (0.65 to 1.06)	436 (1 RCT) ⁽²¹⁹⁾	⊕○○○ VERY LOW d, e	
GMTs - HPV 18	Ferris 2014 month 7	1130.8 mMU/mL (1018.3 – 1255.7)	1470.7 mMU/mL (1311.2 – 1649.5)	GMT Ratio 1.30 (1.11 to 1.52)	961 (1 RCT) ⁽²¹⁹⁾	⊕○○○ VERY LOW b, e	
	Ferris 2014 month 96	41.8 mMU/mL (35.0 – 49.9)	42.8 mMU/mL (34.5 – 53.2)	GMT Ratio 1.02 (0.77 to 1.35)	440 (1 RCT) ⁽²¹⁹⁾	⊕○○○ VERY LOW ^{d, e}	
Seropositivity - HPV 06	Reisinger 2007 month 7	491/492 (99.8%)	455/456 (99.8%)	RR 1.00 (0.99 to 1.01)	948 (1 RCT) ⁽²⁴⁶⁾	⊕⊕⊕○ MODERATE ª	
	Reisinger 2007 month 18	471/481 (97.9%)	439/449 (97.8%)	RR 1.00 (0.98 to 1.02)	930 (1 RCT) ⁽²⁴⁶⁾	⊕⊕⊕○ MODERATE ^a	
Seropositivity - HPV 11	Reisinger 2007 month 7	491/492 (99.8%)	456/457 (99.8%)	RR 1.00 (0.99 to 1.01)	949 (1 RCT) ⁽²⁴⁶⁾	⊕⊕⊕○ MODERATE ª	
	Reisinger 2007 month 18	477/481(99.2%)	447/450 (99.3%)	RR 1.00 (0.99 to 1.01)	931 (1 RCT) ⁽²⁴⁶⁾	⊕⊕⊕○ MODERATE ^a	
Seropositivity - HPV 16	Reisinger 2007 month 7	488/489 (99.8%)	453/455 (99.5%)	RR 1.00 (0.99 to 1.00)	944 (1 RCT) ⁽²⁴⁶⁾	⊕⊕⊕○ MODERATE ^a	
	Reisinger 2007 month 18	477/478 (99.8%)	445/448 (99.3%)	RR 1.00 (0.99 to 1.00)	926 (1 RCT) ⁽²⁴⁶⁾	⊕⊕⊕○ MODERATE ª	

Outcomes		, , , , , , , , , , , , , , , , , , , ,		Relative effect	№ of	Certainty of the
		9 to 15 year old females	9 to 15 year old males	(95% CI)	participants (studies)	evidence (GRADE)
Seropositivity - HPV 18	Reisinger 2007 month 7	442/483 (91.5%)	417/451 (92.5%)	RR 1.01 (0.97 to 1.05)	934 (1 RCT) ⁽²⁴⁶⁾	⊕⊕⊕○ MODERATE ^a
	Reisinger 2007 month 18	492/494 (99.6%)	457/458 (99.8%)	RR 1.00 (0.99 to1.01)	952 (1 RCT) ⁽²⁴⁶⁾	⊕⊕⊕○ MODERATE ª

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). (219) Ferris 2014, (246) Reisinger 2007. a. Downgraded one level for risk of bias: non-randomised comparison. b. Downgraded one level for inconsistency: heterogeneity between the studies at 7 months c. Downgraded one level for imprecision: very small sample size d. Downgraded one level for imprecision: the 95% CI overlaps line of no effect e. Downgraded two levels for risk of bias: non-randomised comparison with cross-over of placebo group to catch up vaccination group; suspected reporting bias in presentation of results and high loss to follow up at later timepoint (attrition bias).

Table 4.37 Immunogenicity outcomes for the 9-valent HPV vaccine in nine to 15 year old males compared to nine to 15 year old females at seven and 36 months

Outcomes		Absolute effects (95% (CI)	Relative effect	Nº of	Certainty of the
		9 to 15 year old females	9 to 15 year old males	(95% CI)	participants (studies)	evidence (GRADE)
GMTs - HPV 06	Van Damme 2015 month 7	1712.0 mMU/mL (1638.9–1788.4)	2084.7 mMU/mL (1940.9 – 2239.2)	GMT Ratio 1.22 (1.12 to 1.33)	2156 (1 RCT) ⁽²⁴⁷⁾	LOM a
	Van Damme 2015 month 36	252.8 mMU/mL (232.1 – 275.3)	262.7 mMU/mL (241.4 – 285.8)	GMT Ratio 1.04 (1.92 to 1.18)	864 (1 RCT) ⁽²⁴⁷⁾	FOM a
GMTs - HPV 11	Van Damme 2015 month 7	1278.7 mMU/mL (1223.1–1336.8)	1487.1 mMU/mL (1385.0 – 1596.7)	GMT Ratio 1.16 (1.07 to 1.26)	2156 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊖⊖ LOW ª
	Van Damme 2015 month 36	145.8 mMU/mL (132.6 – 160.2)	156.6 mMU/mL (142.4 – 172.1)	GMT Ratio 1.07 (094 to 1.22)	874 (1 RCT) ⁽²⁴⁷⁾	⊕○○○ VERY LOW a,b
GMTs - HPV 16	Van Damme 2015 month 7	7071.6 mMU/mL (6776.1–7380.1)	8628.9 mMU/mL (8077.5 – 9218.0)	GMT Ratio 1.22 (1.13 to 1.32)	2196 (1 RCT) ⁽²⁴⁷⁾	DOM a
	Van Damme 2015 month 36	857.4 mMU/mL (779.8 – 942.8)	944.1 mMU/mL (856.4 – 1040.8)	GMT Ratio 1.10 (0.96 to 1.26)	888 (1 RCT) ⁽²⁴⁷⁾	⊕○○○ VERY LOW a,b
GMTs - HPV 18	Van Damme 2015 month 7	2081.2 mMU/mL (1978.8–2188.9)	2822.8 mMU/mL (2609.0 – 3054.2)	GMT Ratio 1.36 (1.24 to 1.49)	2208 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊖⊖ LOW a
	Van Damme 2015 month 36	167.8 mMU/mL (149.5 – 188.3)	244.2 mMU/mL (219.1 – 272.2)	GMT Ratio 1.46 1.24 to 1.72)	888 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊖⊖ LOW a, b
GMTs - HPV 31	Van Damme 2015 month 7	1879.3 mMU/mL (1791.3–1971.6)	2221.2 mMU/mL (2056.4 – 2399.1)	GMT Ratio 1.18 (1.08 to 1.29)	2181 (1 RCT) ⁽²⁴⁷⁾	DOM a
	Van Damme 2015 month 36	216.6 mMU/mL (194.0 – 241.8)	246.3 mMU/mL (221.4 – 274.1)	GMT Ratio 1.14 (0.98 to 1.33)	881 (1 RCT) ⁽²⁴⁷⁾	⊕○○○ VERY LOW a,b
GMTs - HPV 33	Van Damme 2015 month 7	944.1 mMU/mL (904.3–985.7)	1198.7 mMU/mL (1117.3 – 1285.9)	GMT Ratio 1.27 (1.17 to 1.38)	2204 (1 RCT) ⁽²⁴⁷⁾	LOM a
	Van Damme 2015 month 36	94.1 mMU/mL (84.9 – 104.2)	120.8 mMU/mL (109.3 – 133.6)	GMT Ratio 1.28 (1.11 to 1.48)	883 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊖⊖ LOW a, b
GMTs - HPV 45	Van Damme 2015 month 7	737.1 mMU/mL (698.4–777.8)	907.0 mMU/mL (830.0 – 991.2)	GMT Ratio 1.23 (1.11 to 1.38)	2217 (1 RCT) ⁽²⁴⁷⁾	FOM a
	Van Damme 2015 month 36	64.7 mMU/mL (57.1 – 73.4)	76.7 mMU/mL (67.4 – 87.1)	GMT Ratio 1.19 (0.99 – 1.43)	892 (1 RCT) ⁽²⁴⁷⁾	⊕○○○ VERY LOW a,b

Outcomes		Absolute effects (95% CI)		Relative effect	№ of	Certainty of the
		9 to 15 year old females	9 to 15 year old males	(95% CI)	participants (studies)	evidence (GRADE)
GMTs -	Van Damme 2015	970.5 mMU/mL	1037.8 mMU/mL	GMT Ratio 1.07 (0.98 to 1.17)	2210	⊕○○○
HPV 52	month 7	(927.1–1016.0)	(962.9 – 1118.6)		(1 RCT) ⁽²⁴⁷⁾	VERY LOW a,b
	Van Damme 2015 month 36	109.6 mMU/mL (99.7 – 120.4)	104.9 mMU/mL (94.9 – 115.8)	GMT Ratio 0.96 (0.83 to 1.11)	891 (1 RCT) ⁽²⁴⁷⁾	⊕○○○ VERY LOW a,b
GMTs -	Van Damme 2015	1277.7 mMU/mL	1567.7 mMU/mL (1461.2 – 1682.0)	GMT Ratio 1.23	2196	⊕⊕○○
HPV 58	month 7	(1222.0–1336.0)		(1.13 to 1.34)	(1 RCT) ⁽²⁴⁷⁾	LOW a
	Van Damme 2015 month 36	147.4 mMU/mL (133.0 – 163.2)	170.9 mMU/mL (154.5 – 189.0)	GMT Ratio 1.16 (1.00 to 1.35)	887 (1 RCT) ⁽²⁴⁷⁾	⊕○○○ VERY LOW a,b
Seropositivity -	Van Damme 2015	1591/1597 (99.6%)	558/559 (99.8%)	RR 1.00	2156	⊕⊕○○
HPV 06	month 7	(99.2 – 99.9)	(99.0 – 100)	(1.00 to 1.01)	(1 RCT) ⁽²⁴⁷⁾	LOW a
	Van Damme 2015 month 36	401/407 (98.5%) (96.8 – 99.5)	451/457 (98.7%) (97.2 – 99.5)	RR 1.00 (0.99 to 1.02)	864 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊜⊝ LOW a
Seropositivity -	Van Damme 2015	1595/1597 (99.9%)	559/559 (100%)	RR 1.00	2156	⊕⊕⊖⊖
HPV 11	month 7	(99.5 – 100)	(99.3 – 100)	(1.00 to 1.00)	(1 RCT) ⁽²⁴⁷⁾	LOW a
	Van Damme 2015	408/411 (99.3%) (97.9 –	455/463 (98.3%)	RR 0.99	874	⊕⊕○○
	month 36	99.8)	(96.6 – 99.3)	(0.98 to 1.00)	(1 RCT) ⁽²⁴⁷⁾	LOW a
Seropositivity -	Van Damme 2015	1625/1627 (99.9%)	569/569 (100%) (99.4 – 100)	RR 1.00	2196	⊕⊕⊖⊖
HPV 16	month 7	(99.6 – 100)		(1.00 to 1.00)	(1 RCT) ⁽²⁴⁷⁾	LOW a
	Van Damme 2015 month 36	415/416 (99.8%) (98.7 – 100)	470/472 (99.6%) (98.5 – 99.9)	RR 1.00 (0.99 to 1.01)	888 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊖⊖ LOW a
Seropositivity -	Van Damme 2015	1638/1641 (99.8%)	567/567 (100%)	RR 1.00	2208	⊕⊕⊜⊝
HPV 18	month 7	(99.5 – 100)	(99.4 – 100)	(1.00 to 1.00)	(1 RCT) ⁽²⁴⁷⁾	LOW a
	Van Damme 2015 month 36	395/418 (94.5%) (91.9 – 96.5)	454/470 (96.6%) (94.5 – 98.0)	RR 1.02 (0.99 to 1.05)	888 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊜⊝ LOW a
Seropositivity -	Van Damme 2015	1615/1617 (99.9%)	564/564 (100%) (99.3 – 100)	RR 1.00	2181	⊕⊕○○
HPV 31	month 7	(99.7 – 100)		(1.00 to 1.00)	(1 RCT) ⁽²⁴⁷⁾	LOW ^a
	Van Damme 2015 month 36	411/414 (99.3%) (97.9 – 99.9)	460/467 (98.5%) (96.9 – 99.4)	RR 0.99 (0.98 to 1.01)	881 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊖⊖ LOW a
Seropositivity -	Van Damme 2015	1635/1637 (99.9%)	567/567 (100%)	RR 1.00	2204	LOM a
HPV 33	month 7	(99.6 – 100)	(99.4 – 100)	(1.00 to 1.00)	(1 RCT) ⁽²⁴⁷⁾	⊕⊕⊖⊖
	Van Damme 2015 month 36	406/412 (98.5%) (96.9 – 99.5)	465/471 (98.7%) (97.2 – 99.5)	RR 1.00 (0.99 to 1.02)	883 (1 RCT) ⁽²⁴⁷⁾	⊕⊕○○ LOW ^a

Outcomes		Absolute effects (95% CI)	Relative effect	№ of	Certainty of the
		9 to 15 year old females	9 to 15 year old males	(95% CI)	participants (studies)	evidence (GRADE)
Seropositivity - HPV 45	Van Damme 2015 month 7	1644/1647 (99.8%) (99.5 – 100)	570/570 (100%) (99.4 – 100)	RR 1.00 (1.00 to 1.00)	2217 (1 RCT) ⁽²⁴⁷⁾	⊕⊕○○ LOW ^a
	Van Damme 2015 month 36	393/419 (93.8%) (91.0 – 95.9)	440/473 (93.0%) (90.3 – 95.1)	RR 0.99 (0.96 to 1.03)	892 (1 RCT) ⁽²⁴⁷⁾	⊕⊕○○ LOW ^a
Seropositivity - HPV 52	Van Damme 2015 month 7	1640/1642 (99.9%) (99.6 – 100)	568/568 (100%) (99.4 – 100)	RR 1.00 (1.00 to 1.00)	2210 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊖⊖ LOW a
	Van Damme 2015 month 36	415/419 (99.0%) (97.6 – 99.7)	462/472 (97.9%) (96.1 – 99.0)	RR 0.99 (0.97 to 1.00)	891 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊖⊖ LOW a
Seropositivity - HPV 58	Van Damme 2015 month 7	1628/1630 (99.9%) (99.6 – 100)	566/566 (100%) (99.4 – 100)	RR 1.00 (1.00 to 1.00)	2196 (1 RCT) ⁽²⁴⁷⁾	⊕⊕○○ LOW ^a
	Van Damme 2015 month 36	413/417 (99.0%) (97.6 – 99.7)	466/470 (99.1%) (97.8 – 99.8)	RR 1.00 (0.99 to 1.01)	887 (1 RCT) ⁽²⁴⁷⁾	⊕⊕⊖⊖ LOW ^a

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). (247) Van Damme 2015. a. Downgraded two levels for risk of bias: non-randomised comparison with allocation concealment for girls only. Unblinded participants and staff for the immunogenicity study. Difference in approach to populations selected for reporting immunogenicity outcome vs. antibody persistence (selection, performance, detection and reporting bias). Also: High loss to follow up (attrition bias). b. Downgraded one level for imprecision: the 95% CI overlaps line of no effect

Table 4.38 Immunogenicity comparison of 2 doses of the 4-valent HPV vaccine in younger females (9 to 13 year old) versus 3 doses of the 4-valent HPV vaccine in older females (15 to 26 year old) at multiple timepoints

Outcomes		Absolute effects (95% C	1)	Relative effect	Nº of	Certainty of the
		Older (15 to 26 year old) females	Younger (9 to 13 year old) females	(95% CI)	participants (studies)	evidence (GRADE)
GMTs - HPV 06	Dobson 2013 month 7	938 mMU/mL (796 – 1105)	2186 mMU/mL (1846 – 2588)	GMT Ratio 2.33 (1.76 to 3.09)	497 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, b
	Dobson 2013 month 36	176 mMU/mL (145 – 213)	239 mMU/mL (195 – 292)	GMT Ratio 1.36 (0.97 to 1.90)	176 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, b, c, d, e
	Hernandez-Avila 2016 month 7	387.3 mMU/mL (305.4 – 491.2)	306.2 mMU/mL (228.3 – 410.7)	GMT Ratio 0.79 (0.54 to 1.15)	278 (1 RCT (221)	⊕○○○ VERY LOW a, b, e
	Hernandez-Avila 2016 month 21	74.4 mMU/mL (63.3 – 87.3)	95.6 mMU/mL (81.0 – 112.8)	GMT Ratio 1.29 (1.02 – 1.62)	256 (1 RCT ⁽²²¹⁾	⊕○○○ VERY LOW a, b

Outcomes		Absolute effects (95%	CI)	Relative effect (95% CI)	№ of participants	Certainty of the evidence
		Older (15 to 26 year old) females	Younger (9 to 13 year old) females	(43% CI)	(studies)	(GRADE)
GMTs - HPV 11	Dobson 2013 month 7	1277 mMU/mL (1144 – 1427)	2348 mMU/mL (2090 – 2638)	GMT Ratio 1.84 (1.52 to 2.23)	512 (1 RCT) ⁽²¹⁸⁾	⊕⊕⊖⊖ LOW ^a
	Dobson 2013 month 36	208 mMU/mL (172 – 251)	298 mMU/mL (244 – 364)	GMT Ratio 1.43 (1.03 to 1.99)	183 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c, d
	Hernandez-Avila 2016 month 7	629.9 mMU/mL (540.4 – 734.2	968.3 mMU/mL (800.1 – 1171.9)	GMT Ratio 1.54 (1.20 to 1.96)	285 (1 RCT ⁽²²¹⁾	⊕⊕○○ LOW a
	Hernandez-Avila 2016 month 21	85.8 mMU/mL (73.9 – 99.6)	130.2 mMU/mL (109.3 – 155.0)	GMT Ratio 1.52 (1.21 – 1.91)	269 (1 RCT (221)	⊕⊕○○ LOW a
GMTs - HPV 16	Dobson 2013 month 7	3574 mMU/mL (3065 – 4169)	7457 mMU/mL (6388 – 8704)	GMT Ratio 2.09 (1.61 to 2.71)	489 (1 RCT) ⁽²¹⁸⁾	⊕⊕○○ LOW a
	Dobson 2013 month 36	678 mMU/mL (540 – 850)	1151 mMU/mL (918 – 1444)	GMT Ratio 1.70 (1.16 to 2.49)	172 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c, d
	Hernandez-Avila 2016 month 7	2408.8 mMU/mL (2003.5 – 2896.1)	5136.7 mMU/mL (4035.8 – 6538.0)	GMT Ratio 2.13 (1.58 to 2.89)	286 (1 RCT (221)	⊕⊕○○ LOW a
	Hernandez-Avila 2016 month 21	276.2 mMU/mL (226.0 – 337.7)	412.8 mMU/mL (338.1 – 504.1)	GMT Ratio 1.49 (1.12 to 1.98)	274 (1 RCT (221)	⊕⊕○○ LOW a
GMTs - HPV 18	Dobson 2013 month 7	661 mMU/mL (580 – 754)	1207 mMU/mL (1054 – 1384)	GMT Ratio 1.83 (1.46 to 2.29)	507 (1 RCT) ⁽²¹⁸⁾	⊕⊕○○ LOW ^a
	Dobson 2013 month 36	71 mMU/mL (53 – 95)	104 mMU/mL (77 – 141)	GMT Ratio 1.46 (0.88 to 2.41)	182 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, b, c, d
	Hernandez-Avila 2016 month 7	343.7 mMU/mL (291.9 – 404.7)	605.0 mMU/mL (503.2 – 727.4)	GMT Ratio 1.76 (1.38 to 2.25)	286 (1 RCT ⁽²²¹⁾	LOM₃ ⊕⊕⊖⊖
	Hernandez-Avila 2016 month 21	73.9 mMU/mL (61.3 – 89.1)	93.8 mMU/mL (76.4 – 115.3)	GMT Ratio 1.27 (0.96 to 1.67)	176 (1 RCT (221)	⊕○○○ VERY LOW a, e
Seropositivity - HPV 06	Dobson 2013 month 7	255/256 (>99%)	240/241 (>99%)	RR 1.00 (0.99 to 1.01)	497 (1 RCT) ⁽²¹⁸⁾	⊕⊕○○ LOW a
	Dobson 2013 month 36	92/92 (100%)	84/84 (100%)	RR 1.00 (0.98 to 1.02)	176 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c, d
	Hernandez-Avila 2016 month 7	137/141 (97.1%)	141/145 (97.2%)	RR 1.00 (0.96 to 1.04)	286 (1 RCT ⁽²²¹⁾	⊕⊕○○ LOW a

Outcomes		Absolute effects (95%	CI)	Relative effect	№ of	Certainty of the evidence (GRADE)
		Older (15 to 26 year old) females	Younger (9 to 13 year old) females	(95% CI)	participants (studies)	
	Hernandez-Avila 2016 month 21	121/136 (89%)	135/141 (95.7%)	RR 1.08 (1.00 to 1.15)	277 (1 RCT ⁽²²¹⁾	LOM a
Seropositivity - HPV 11	Dobson 2013 month 7	269/269 (100%)	243/243 (100%)	RR 1.00 (0.99 to 1.01)	512 (1 RCT) ⁽²¹⁸⁾	⊕⊕○○ LOW ^a
	Dobson 2013 month 36	97/97 (100%)	86/86 (100%)	RR 1.00 (0.98 to 1.02)	183 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c, d
	Hernandez-Avila 2016 month 7	141/141 (100%)	144/145 (99.3%)	RR 0.99 (0.97 to 1.01)	286 (1 RCT (221)	FOM a
	Hernandez-Avila 2016 month 21	132/136 (97.1%)	137/141 (97.2%)	RR 1.00 (0.96 to 1.04)	277 (1 RCT (221)	LOM a
Seropositivity - HPV 16	Dobson 2013 month 7	246/246 (100%)	243/243 (100%)	RR 1.00 (0.99 to 1.01)	489 (1 RCT) ⁽²¹⁸⁾	FOM a
	Dobson 2013 month 36	86/86 (100%)	86/86 (100%)	RR 1.00 (0.98 to 1.02)	172 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c, d
	Hernandez-Avila 2016 month 7	141/141 (100%)	145/145 (100%)	RR 1.00 (0.99 to 1.01)	286 (1 RCT (221)	⊕⊕○○ LOW ^a
	Hernandez-Avila 2016 month 21	134/136 (98.5%)	140/141 (99.3%)	RR 1.01 (0.98 to 1.03)	277 (1 RCT (221)	DOM a
Seropositivity - HPV 18	Dobson 2013 month 7	264/264 (100%)	243/243 (100%)	RR 1.00 (0.99 to 1.01)	507 (1 RCT) ⁽²¹⁸⁾	LOM a
	Dobson 2013 month 36	76/96 (79%)	74/86 (86%)	RR 1.09 (0.95 to 1.24)	182 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c, d
	Hernandez-Avila 2016 month 7	141/141 (100%)	145/145 (100%)	RR 1.00 (0.99 to 1.01)	286 (1 RCT) ⁽²²¹⁾	DOM a
	Hernandez-Avila 2016 month 21	77/136 (56.6%)	99/141 (70.2%)	RR 1.24 (1.03 to 1.49)	277 (1 RCT) ⁽²²¹⁾	FOM a

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). (218) Dobson 2013, (221) Hernandez-Avila 2016. a. Downgraded two levels for risk of bias: non-random sequence generation; open-label trials with unclear allocation concealment. b. Downgraded one level for inconsistency: heterogeneity between studies for HPV 6. c. Downgraded one level for imprecision: low sample size. d. Downgraded one level for risk of bias: high loss to follow up. e. Downgraded one level for imprecision: the 95% CI overlaps line of no effect

Table 4.39 Immunogenicity comparison of 2 doses versus 3 doses of the 4-valent HPV vaccine in younger females (9 to 13 year old) at multiple timepoints (7 and 36 months)

Outcomes		Absolute effects (95% CI Three doses	Two doses	Relative effect (95% CI)	№ of participants (studies)	Certainty of the evidence (GRADE)
GMTs - HPV 06	Dobson 2013 month 7	1856 mMU/mL (1571 – 2192)	2186 mMU/mL (1846 – 2588)	GMT Ratio 1.18 (0.89 to 1.56)	489 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, b
	Dobson 2013 month 36	372 mMU/mL (304 – 456)	239 mMU/mL (195 – 292)	GMT Ratio 0.64 (0.46 to 0.90)	167 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c
GMTs - HPV 11	Dobson 2013 month 7	2096 mMU/mL (1869 – 2350)	2348 mMU/mL (2090 – 2638)	GMT Ratio 1.12 (0.92 to 1.36)	494 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, b
	Dobson 2013 month 36	410 mMU/mL (335 – 503)	298 mMU/mL (244 – 364)	GMT Ratio 0.73 (0.52 to 1.02)	168 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, b, c
GMTs - HPV 16	Dobson 2013 month 7	7640 mMU/mL (6561 – 8896)	7457 mMU/mL (6388 – 8704)	GMT Ratio 0.98 (0.75 to 1.27)	494 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, b
	Dobson 2013 month 36	1413 mMU/mL (1122 – 1780)	1151 mMU/mL (918 – 1444)	GMT Ratio 0.81 (0.55 to 1.20)	169 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, b, c
GMTs - HPV 18	Dobson 2013 month 7	1703 mMU/mL (1489 – 1946)	1207 mMU/mL (1054 – 1384)	GMT Ratio 0.71 (0.56 to 0.89)	495 (1 RCT) ⁽²¹⁸⁾	LOM a
	Dobson 2013 month 36	239 mMU/mL (175 – 327)	104 mMU/mL (77 – 141)	GMT Ratio 0.43 (0.26 to 0.73)	169 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c
Seropositivity - HPV 06	Dobson 2013 month 7	248/248 (100%)	240/241 (99.6%)	RR 1.00 (0.98 to 1.01)	489 (1 RCT) ⁽²¹⁸⁾	⊕⊕○○ LOW ^a
	Dobson 2013 month 36	83/83 (100%)	84/84 (100%)	RR 1.00 (0.98 to 1.02)	167 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c
Seropositivity - HPV 11	Dobson 2013 month 7	251/251 (100%)	243/243 (100%)	RR 1.00 (0.99 to 1.01)	494 (1 RCT) ⁽²¹⁸⁾	LOM a
	Dobson 2013 month 36	82/82 (100%)	86/86 (100%)	RR 1.00 (0.98 to 1.02)	168 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c
Seropositivity - HPV 16	Dobson 2013 month 7	251/251 (100%)	243/243 (100%)	RR 1.00 (0.99 to 1.01)	494 (1 RCT) ⁽²¹⁸⁾	LOM a
	Dobson 2013 month 36	83/83 (100%)	86/86 (100%)	RR 1.00 (0.98 to 1.02)	169 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c
Seropositivity - HPV 18	Dobson 2013 month 7	252/252 (100%)	243/243 (100%)	RR 1.00 (0.99 to 1.01)	495 (1 RCT) ⁽²¹⁸⁾	⊕⊕○○ LOW a

Outcomes				Relative effect	№ of participants	2
		Three doses	Two doses	(95% CI)	(studies)	evidence (GRADE)
	Dobson 2013 month 36	79/83 (95%)	74/86 (86%)	RR 0.90 (0.82 to 1.02)	169 (1 RCT) ⁽²¹⁸⁾	⊕○○○ VERY LOW a, c

^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). (218) Dobson 2013. a. Downgraded two levels for risk of bias: non-random sequence generation; open-label trial with unclear allocation concealment; high loss to follow up (attrition bias at 36 months). b. Downgraded one level for imprecision: the 95% CI overlaps line of no effect. c. Downgraded one level for imprecision: low sample size

Appendix 5

Appendix 5A: Search terms and results

Embase

Embase 06/07/2017		Search Strings	Results
Searches	#1	(papillomavirus vaccine) OR (papillomavirus vaccination) OR (HPV vaccine) OR (HPV vaccination)	13,822
	#2	(condylomata AND acuminata) OR (anogenital AND warts) OR (cervical AND intraepithelial AND neoplasia) OR (cervical AND dysplasia) OR (uterine AND cervical AND neoplasm) OR (hpv AND related AND diseases) OR (papillomavirus AND infection)	45,818
	#3	(program AND evaluation) OR (population AND surveillance) OR (sentinel AND surveillance) OR incidence OR prevalence	1,825,623
	#4	1 AND 2 AND 3	3,226
	#5	Publication year 2014 to 2017	1,179

PubMed

Search string: ((((papillomavirus vaccine) OR (papillomavirus vaccination) OR (hpv vaccine) OR (hpv vaccination))) AND ((condylomata AND acuminata) OR (anogenital AND warts) OR (cervical AND intraepithelial AND neoplasia) OR (cervical AND dysplasia) OR (uterine AND cervical AND neoplasm) OR (hpv AND related AND diseases) OR (papillomavirus AND infection))) AND ((program AND evaluation) OR (population AND surveillance) OR (sentinel AND surveillance) OR incidence OR prevalence)

Filter: publications from 1/1/2014 to 6/7/2017

(= 982 results)

Appendix 5B: AMSTAR 2

The following is the quality appraisal of the systematic review by Drolet et al. (295) using the AMSTAR 2 quality appraisal tool. (292)

Item 1. Did the research questions and inclusion criteria for the review include the components of PICO?

Answer: Yes

Item 2. Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol?

Answer: Partial yes. Protocol registration was not identified for this review. This systematic review was conducted prior to the conception of AMSTAR 2, and protocol registration was not commonplace in the past. Nonetheless, authors report that an a priori design was used without significant deviations from the protocol.

Item 3. Did the review authors explain their selection of the study designs for inclusion in the review?

Answer: Yes

Item 4. Did the review authors use a comprehensive literature search strategy?

Answer: Yes

Item 5. Did the review authors perform study selection in duplicate?

Answer: Yes

Item 6. Did the review authors perform data extraction in duplicate?

Answer: Yes

Item 7. Did the review authors provide a list of excluded studies and justify the

exclusions?

Answer: Partial yes. Authors provided justifications for the exclusions, however a reference list not given.

Item 8. Did the review authors describe the included studies in adequate detail?

Answer: Yes

Item 9. Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?

Answer: Yes

Item 10. Did the review authors report on the sources of funding for the studies included in the review?

Answer: Yes

Item 11. If meta-analysis was performed did the review authors use appropriate methods for statistical combination of results?

Answer: Yes

Item 12. If meta-analysis was performed, did the review authors assess the potential impact of RoB in individual studies on the results of the meta-analysis or other evidence synthesis?

Answer: Yes

Item 13. Did the review authors account for RoB in individual studies when interpreting/discussing the results of the review?

Answer: Yes

Item 14. Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?

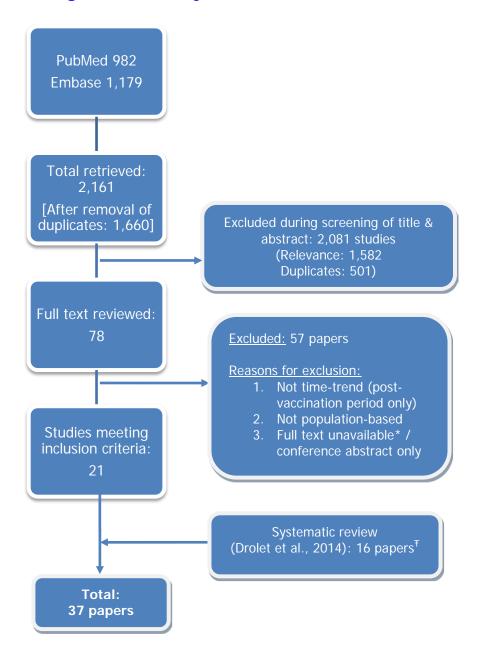
Answer: Yes. Meta-regression was employed to deal with issue of heterogeneity foundacross studies.

Item 15. If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?

Answer: No. Publication bias appears not to have been assessed. However, for the purposes of updating this review, estimates from the meta-analysis were not used as we decided a priori not to pool results from individual studies.

Item 16. Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?

Answer: Yes


Conclusion: All items received a positive rating with the exception of items 2, 7 and 15.

Item 2 was rated as a 'partial yes'. AMSTAR 2 now specifies that a protocol for the systematic review must have been registered to receive a 'yes' for this item. However, authors do report that an *a priori* design was followed and there were no major deviations to the planned methods. Additionally, the systematic review was conducted prior to the conception of AMSTAR 2 when registering procols for systematic reviews was not commonplace.

Item 7 received a partial yes. Authors provided justifications for the exclusions, however a reference list not given.

Item 15 received a 'no' with relation to the identification and consideration of publication bias. In terms of updating this systematic review, however, we did not judge this to be of major concern as estimates from the meta-analysis were not used in our updated review. It was decided *a priori* not to pool results from individual studies due to the high levels of heterogeneity noted across studies due to large differences in vaccination programmes.

Appendix 5C: Flow diagram for study selection

^{*}Since our initial search, the full text of Cocchio et al. 2017 has become available (item 13 in excluded list – Appendix 5E)

*While Drolet et al. 2014 included 20 papers, full text was unavailable for three (conference proceedings) and one study was otherwise excluded (see appendix 5E)

Appendix 5D: Risk of bias in included studies

D.1 HPV infection

Study	Cameron , 2016 ⁽³⁰⁰⁾	Chow , 2015 ⁽²⁹⁸⁾	Chow , 2017 ⁽²⁹⁹⁾	Cummings , 2012 ⁽²⁹⁶⁾	Dunne , 2015 ⁽³¹⁰⁾
Funding	Monitoring and evaluation of the HPV immunisation programme in Scotland is funded by the Scottish government.	The Australian National Health and Medical Research Council Program	The Australian National Health and Medical Research Council Program	National Institutes of Health	Division of STD Prevention, CDC.
Risk of selection bias					
Subjects included in the study	Women aged 20–21 years participating in routine cervical cancer screening in Scotland	Women aged 25 years or younger who attended the Melbourne Sexual Health Centre (Melbourne, VIC, Australia) diagnosed with chlamydia	Heterosexual men aged 25 years or younger attending the Melbourne Sexual Health Centre between July 1, 2004, and June 30, 2015, who tested positive for Chlamydia trachomatis	Clinic-based: Women attending 1 of 3 urban primary care clinics in Indianapolis	Population based: Residual specimens from women attending routine cervical screening at Kaiser Permanente Northwest
Potential for selection bias: Changes in the study population characteristics between the pre- and post-vaccination periods	Low Unlikely changes in the attendees between the pre- and post-vaccination periods	Low Unlikely changes in the attendees between the pre- and post-vaccination periods	Low Unlikely changes in the attendees between the pre- and post-vaccination periods	Low Unlikely changes in the clientele of primary care clinics between the pre- and post-vaccination periods	Low Unlikely changes in the women attending routine screening between the pre- and post-vaccination periods
Risk of information bias					
HPV testing	HPV+ Multimetrix HPV assay (Diamex, Heidelberg, Germany; 18 types)	PCR: HPV amplification and detection using the PapType high-risk HPV detection and genotyping kit	PCR [PapType assay (Genera Biosystems,Scoresby, VIC, Australia)]	PCR Roche Linear Array test which detects 37 different HPV types	Linear Array (LA) HPV Genotyping Test (Roche Molecular Diagnostics) and HPV-52 quantitative polymerase chain reaction
Performance of the HPV test used	Unreported	Unreported	Unreported	Unreported	Unreported
Outcome used in publication	Odds and adjusted odds ratios reported, along with	Both frequency of infection and adjusted	Both frequency of infection and adjusted	Odds ratios of HPV prevalence (crude)	Odds ratios of HPV prevalence (adjusted)

	frequencies	prevalence ratios reported	prevalence ratios reported		
Potential for information bias: Errors in the identification of HPV+ during the pre and post-vaccination period	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period
Risk of confounding					
Potential confounders considered	Adjusted odds reported: adjust for birth year, number of doses of vaccine received, SIMD score, and age at vaccination	Adjustment for confounders also included (number of sexual partners, condom use, and anatomical sampling sites).	Also adjusted for number of female partners and 100% condom use.	Analysis matched on age at enrollment, clinic site and reported sexual activity (yes, never) at time of enrollment	Confounders considered including recent STI and recent pregnancy testing.
Potential for confounding: Changes in HPV infection between the pre and post-vaccination periods could be diluted/exacerbated by other variables	Low	Low	Low	Medium. Changes in sexual activity not accounted for except yes/never	Low
External validity					
External validity: Results can be generalised to the population at the country/region level†	High. Population-based surveillance	Medium. Young women attending STI clinic testing positive for chlamydia may not represent overall population.	Medium. Men attending STI clinic testing positive for chlamydia may not represent overall population.	Medium. Young women attending to urban primary care clinics may not represent the overall population (e.g., different vaccination coverage)	High. Attendees of routine screening

Study	Kahn , 2012 ⁽³⁰¹⁾	Kahn , 2016 ⁽³⁰²⁾	Kavanagh , 2014 ⁽³⁰⁹⁾	Markowitz , 2013 ⁽³⁰⁸⁾
Funding	National Institutes of Health	National Institute of Allergy and Infectious Diseases, National Institutes of Health	Scottish government, Chief Scientist Office	Centers for Disease Control and Prevention
Risk of selection bias				
Subjects included in the study	Clinic-based: Young women attending 2 primary care clinics in Cincinnati who had had sexual contact. Great proportion of minority and low-income women	Clinic-based: Three sites that provide primary care to adolescents and young adults: a hospital-based teen health center and 2 health department sites (a community health center and sexually transmitted disease clinic)	Population based: Women attending their cervical screening appointment across Scotland	Population-based: Participants in NHANES which is designed to be nationally representative of the civilian, non-institutionalised US population
Potential for selection bias: Changes in the study population characteristics between the pre- and post-vaccination periods	Low. Unlikely changes in the clientele of primary care clinics between the preand post-vaccination periods	Low. Unlikely changes in the clientele of primary care clinics between the pre- and post-vaccination periods	Low. No documented changes in screening rates of women aged 20-24 years old between the pre- and post-vaccination periods	Low Unlikely changes in the NHANES participants between the pre- and post-vaccination periods
Risk of information bias				
HPV testing	PCR Roche Linear Array test which detects 37 different HPV types	PCR Roche Linear Array test which detects 36 different HPV types.	Multimetrix HPV Assay which detects 18 high-risk types	PCR Roche Linear Array test which detects 37 different HPV types
Performance of the HPV test used	Unreported	Unreported	Low	Unreported
Outcome used in publication	HPV prevalence difference (adjusted)	HPV prevalence difference (adjusted)	HPV prevalence over time	HPV prevalence ratio (crude)
Potential for information bias: Errors in the identification of HPV+ during the pre and post-vaccination period Risk of confounding	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period

Potential confounders considered	Analysis adjusted for demographic characteristics (race, health insurance plan etc), gynecologic history (number of times pregnant, history of Chlamydia, AGW), behaviors (age at first sexual intercourse, number male sexual partners, condom use, smoking etc) using propensity scores	Adjusted with Propensity Scores (logistic regression). Adjusted for demographic characteristics, gynecologic history, sexual history, and enrollment site, independent of the study outcome.	No adjustment in the analysis of changes of HPV prevalence over time	Analysis adjusted for race/ethnicity, lifetime number of sex partners for girls aged 14-19 years old. No adjustment for the other age groups, but all analysis weighted to represent the U.S population
Potential for confounding: Changes in HPV infection between the pre and post-vaccination periods could be diluted/exacerbated by other variables	Low/Medium Several risk factors were considered. However, residual confounding by other factors associated with HPV vaccination and infection may still be present	Low/Medium Several risk factors were considered. However, residual confounding by other factors associated with HPV vaccination and infection may still be present	Medium No adjusted analysis of changes in HPV prevalence over time. Confounding by factors associated with HPV vaccination and infection may be present (e.g., changes in sexual activity)	Low/medium Few factors considered for girls aged 14-19 years old
External validity				
External validity: Results can be generalised to the population at the country/region level†	Low/medium Women attending to the 2 primary care clinics may not be representative of the overall population (e.g., different vaccination coverage). Minorities and women from low socio- economic status are overrepresented	Low/medium Women attending to the 3 sites may not be representative of the overall population (e.g., different vaccination coverage). Also, possible overrepresentation of minorities and women from low socio- economic status	Medium/high Women participating in screening may not represent to overall population (e.g., different vaccination coverage)	Medium/high The survey was designed to be representative of the general population but non-participants could still be different than participants with respect to variables not considered in the sampling design.

Study	Markowitz , 2016 ⁽³⁰⁷⁾	Mesher , 2013 ⁽³⁰⁶⁾	Mesher , 2016 ⁽³⁰³⁾	Soderlund-Strand , 2014 ⁽³¹¹⁾
Funding	Centers for Disease Control and Prevention	Public Health England	Public Health England	Public Health Agency of Sweden
Risk of selection bias				
Subjects included in the study	Population-based: Participants in NHANES which is designed to be nationally representative of the civilian, non-institutionalized US population	Clinic-based: Women undergoing chlamydia screening at community sexual health services, general practice and youth clinics in 7 regions around England	Girls and women aged 16–24 years undergoing chlamydia screening in community sexual health services, general practice, youth clinics in 7 regions around England	Samples from the Chlamydia trachomatis screening in Skane Sweden
Potential for selection bias: Changes in the study population characteristics between the pre- and post-vaccination periods	Low Unlikely changes in the NHANES participants between the pre- and post-vaccination periods	Medium Documented changes in the clientele receiving chlamydia testing between the pre- and post- vaccination periods	Medium Analyses compare data from repeat cross-sectional surveys. Therefore, unrecorded changes in the population characteristics may have resulted in a change in HPV prevalence which is unrelated to HPV vaccination.	Low Unlikely change in participants in Chlamydia screening programme
Risk of information bias	5			
HPV testing	PCR Roche Linear Array test which detects 37 different HPV types	2008: Hybrid Capture 2 and Roche Linear Array 2010-2012: HPV+ In- house multiplex PCR and Luminex- based genotyping test (13 HPV types)	Post-vaccination: using in-house multiplex PCR and Luminex-based genotyping test with pyruvate dehydrogenase (PDH) detection for sample integrity. Pre-vaccination specimens were tested by Hybrid Capture 2 (HC2) HPV DNA test using the Combined Probe Cocktail Method to detect HR and possible HR types (as above) and five LR types (6, 11, 42, 43 and 44) and genotyped by the Linear Array HPV Genotyping (LA) test (Roche Molecular Systems) if HC2 positive. Logistic regresion then used to account for different testing platforms	PCR with genotyping by matrix- assisted laser desorption ionization time-of-flight (MALDI- TOF) mass spectrometry. Secondary HPV DNA analysis on the Luminex platform
Performance of the HPV test used	Unreported	Unreported	Unreported	Unreported
Outcome used in	Adjusted prevalence ratio	Odds ratios of HPV prevalence	Prevalence, odds ratios and adjust	HPV prevalence over time

publication	comparing NHANES 2003–2006 and 2009–2012	(adjusted)	odds ratios	
Potential for information bias: Errors in the identification of HPV+ during the pre and post-vaccination period	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period	Medium/high Potential for masking by HPV16/18, particularly in the pre-vaccine period; different tests used in the pre- and post-vaccination periods Which may have contributed to higher prevalence of non-vaccine types in the post-vaccination period	Low Adjusted for different testing platform in pre- and post- vaccination periods	High Authors found a "strong increasing trend over time in the use of genital swabs for Chlamydia screening"; it has been well documented that this sample type is better for HPV detection that urine samples
Risk of confounding				
Potential confounders considered	Adjusted for race/ethnicity and lifetime and past year number of sex partners. All estimates were weighted by using sample weights to account for unequal probabilities of selection and adjustment for nonresponse.	Analysis adjusted for sexual history, age, venue type, ethnicity and chlamydia positivity	Adjusted ORs were calculated adjusting for age, testing venue type and chlamydia positivity (as a marker for sexual behaviour).	Analysis by age and gender
Potential for confounding: Changes in HPV infection between the pre and post-vaccination periods could be diluted/exacerbated by other variables	Low/medium	Medium. Several risk factors were considered. However, residual confounding by other factors associated with HPV vaccination and infection can still be present (e.g., changes in sexual activity)	Low	High Other confounders not considered such as sexual behaviour patterns
External validity				
External validity: Results can be generalized to the population at the country/region level†	Medium/high The survey was designed to be representative of the general population but non-participants could still be different than participants with respect to variables not considered in the sampling design.	Medium Chlamydia screening recommended for all sexually-active young women and uptake was 40% in 2011. However, women undergoing chlamydia screening may not be representative of the overall population (e.g., different vaccination coverage)	High Attendees of screening	High The Skane region in Southern Sweden has 1.27 million inhabitants). During a single year 23% of all 19-year-old girls undergo Chlamydia screening

Study	Sonnenberg , 2013 ⁽³⁰⁴⁾	Tabrizi , 2012 ⁽²⁹⁷⁾	Tabrizi , 2014 ⁽³¹³⁾
Funding	UK Medical Research Council, Wellcome Trust, Economic and Social Research Council and the Department of Health	Australian National Health and Medical Research Council, and AntiCancer Council for Victoria	Australian National Health and Medical Research Council, and AntiCancer Council for Victoria
Risk of selection bias			
Subjects included in the study	Population-based: Participants in NATSAL which is designed to be nationally representative of the British population	Clinic-based: Women recruited from participating family planning clinics for Pap screening in Sydney, Melbourne, and Perth	Clinic-based: Women recruited from participating family planning clinics for Pap screening in Sydney, Melbourne, and Perth
Potential for selection bias: Changes in the study population characteristics between the pre- and post- vaccination periods	Medium Possible changes in the NATSAL participants between the pre- and post-vaccination periods (> 10 yrs between the 2 periods). Both surveys are weighted to Census data from the time.	Low Unlikely changes in the clientele of family planning clinics between the pre- and post- vaccination periods	Low Women in the postvaccine implementation sample were more likely to be using hormonal contraception but were similar with respect to other characteristics
Risk of information bias			
HPV testing	In-house Luminex-based genotyping assay (20 HPV types) in urine samples	Amplicor HPV test kit (Roche Molecular system) (13 HPV types) and PGMY09- PGMY11 PCR-ELISA Roche Linear Array HPV Genotyping test	Amplicor HPV test kit (Roche Molecular system) (13 HPV types) and PGMY09- PGMY11 PCR-ELISA Roche Linear Array HPV Genotyping test
Performance of the HPV test used	Unreported	Unreported	Unreported
Outcome used in publication	Odds ratios of HPV prevalence (adjusted)	Odds ratios of HPV prevalence (adjusted)	Odds ratios of HPV prevalence (adjusted)
Potential for information bias: Errors in the identification of HPV+ during the pre and post- vaccination period	High. Potential for masking by HPV16/18, particularly in the pre-vaccine period; Urine is a suboptimum specimen for the detection of HPV; Differences in methods of sample collection, preparation and storage between the pre- and post-vaccination periods	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period	Medium Potential for masking by HPV16/18, particularly in the pre-vaccine period
Risk of confounding			
Potential confounders considered	No adjustment in the comparison of HPV prevalence between the pre- and post-vaccination periods, but all analysis weighted to represent the British population	Analysis adjusted for age, contraceptive use, region, socioeconomic group and smoking status (these variables differed significantly between the 3 groups of women)	Analysis adjusted for confounding by sociodemographic characteristics (age, hormonal contraceptive use, education, country of birth), and the number of sexual partners in the past 12 months

Potential for confounding:
Changes in HPV infection
between the pre and post-
vaccination periods could be
diluted/exacerbated by
other variables

Medium/high

No adjusted analysis of changes in HPV prevalence over time and likely changes over a 10-year period in factors associated with HPV vaccination and infection (e.g., changes in sexual activity documented when comparing NATSAL-2 and -3

Medium

Few sexual behavior factors considered and residual confounding by other factors associated with HPV vaccination and infection is possible (e.g., changes in sexual activity)

Low

External validity

External validity: Results can be generalized to the population at the country/region level†

Medium

The survey was designed to be representative of the general population. However, participants and those providing urine samples might not be fully representative of the general population, despite efforts to adjust for known biases and the use of additional weights for urine selection and urine non-response

Medium

Young women attending family planning clinics may not represent the overall population (e.g., different vaccination coverage)

Medium

Young women attending family planning clinics may not represent the overall population (e.g., different vaccination coverage)

†For external validity, high is good.

C.2. Risk of Bias: Anogenital warts

Study	Ali, 2013 ⁽³¹⁴⁾	Baandrup, 2013 ⁽³¹⁵⁾	Bauer, 2012 ⁽³¹⁶⁾	Bollerup, 2016 ⁽³¹⁷⁾
Funding	CSL Biotherapies	Aragon Foundation, Aase and Ejnar Danielsen Foundation, Mermaid II Project	CDC, California Department of Public Health	Mermaid II Project
Risk of selection bias				
Subjects included in the study	Clinic-based: New clients of 8 sexual health services across Australia (Australian born)	Population-based: Denmark population from Statistics Denmark	Health provider/insurance- based: Clients of the California Family Planning access care & treatment (FPACT) program	Data from 2 nationwide registries: the Danish National Patient Register and the National Prescription Registry. Both are nationwide registers based on individual-level data.
Potential for selection bias: Changes in the study population characteristics between the pre- and post-vaccination periods	Medium/High Possible changes in the clientele of the sexual health services in the pre- and post-vaccination periods as reflected by increasing annual number of clients and % of clients with chlamydia after 2006	Low Entire population of Denmark	Low Unlikely change in the FPACT (family planning program for low-income individuals) clientele between the preand post-vaccination periods	Low Entire population of Denmark
Risk of information bias				
Data source	Medical records	National patient register	FPACT database (clinical encounter claims data)	National patient registries
Anogenital wart case definition	Clinical diagnosis	ICD-10 code A63.0	ICD-9 codes 078.10, 078.11 OR prescription of Imiquimod or Podophyllotoxin	ICD diagnostic code A63.0; for Podophyllin prescriptions: Anatomical Therapeutic Chemical code D06BB04
Outcome used in publication	Annual proportion of new clients with diagnosed AGW	Annual incidence rate of diagnosed AGW in the population	Annual proportion of FPACT clients diagnosed with AGW	Annual incidence rate in the population
Numerator	Number of newly diagnosed AGW cases per year	Number of newly diagnosed AGW cases each year (washout period of 12 months)	Number of first ever cases diagnosed after 2007 (cases prior to 2007 excluded) per year	Number of new AGW cases each year (clinical or Podophyllin GP prescription)

Denominator	Total number of new patients per year	Annual population estimates	All clients registered in the FPACT each year	Annual population estimates covering all of Denmark obtained from Statistics Denmark
Potential for information bias: Errors in the identification of diagnosed AGW cases during the pre and post-vaccination period	Low AGW are directly diagnosed by physicians	Medium Sensitivity/specificity of algorithm to correctly identify diagnosed AGW not specified. AGW treated by GP not included. However, unlikely to change over time	Medium Sensitivity/specificity of algorithm to correctly identify diagnosed AGW not specified, unlikely to change over time unless awareness is associated with likelihood of including code	Low/Medium Sensitivity/specificity of algorithm to correctly identify diagnosed AGW not specified. However, unlikely to change over time
Risk of confounding				
Potential confounders considered	Analysis stratified by age, gender, sexual orientation and residential status	Stratified by age and sex	Analysis stratified by age and gender	Stratified by age and sex
Potential for confounding: Changes in AGW between the pre and post-vaccination periods could be diluted/exacerbated by other variables	High Other factors could potentially cause changes in AGW frequency over time (e.g., changes in sexual activity, health seeking behaviour) and data suggested increasing proportion of clients with chlamydia after 2007	Medium Other factors may have altered disease rates in population	Medium Other factors could potentially cause changes in AGW frequency over time (e.g., changes in sexual activity)	Medium Other factors could potentially cause changes in AGW frequency over time (e.g., changes in sexual activity, health seeking behaviour). However, authors note other STIs have increased in Denmark over study timeframe.
External validity				
External validity: Results can be generalized to the population at the country/region level†	Low Clients of 8 sexual health clinics possibly representative of sexual health clinic clients in Australia, may not represent the overall population (e.g., different vaccination coverage)	High Entire population, contains all cases of AGW admitted to hospital or in outpatient clinics	Medium FPACT is a program for low- income individuals and 87% of participants are females. Results could be different for medium/high-income individuals (e.g., different vaccination coverage)	High Entire population of Denmark analysed

Study	Chow, 2014 ⁽³¹⁸⁾	Dominiak, 2015 ⁽³¹⁹⁾	Flagg, 2013 ⁽³²⁰⁾	Guerra, 2016 ⁽³²¹⁾
Funding	National Health and Medical Research Council (NHMRC) programme grant	Sanofi Pasteur MSD	Centers for Disease Control and Prevention	Public Health Ontario
Risk of selection bias				
Subjects included in the study	Clinic-based. New patients attending Melbourne Sexual Health Centre from July 2004 to June 2014	All women and men aged 16–59 years in Belgium	Health provider/insurance-based : Enrollees in approximately 100 private health insurance plans across US	Entire population Ontario aged over 15
Potential for selection bias: Changes in the study population characteristics between the pre- and post- vaccination periods	Medium/High Authors note change (increase) in presentations at MSHC over time.	Low	Low Unlikely change in enrollees of insurance plans between the pre and post-vaccination periods. No decrease in Pap test or pelvic examination (opportunities to diagnose AGW) over time	Low
Risk of information bias				
Data source	Medical records	Database (reimbursement database)	Truven Health Analytics MarketScan Commercial Claims and Encounters Database	Health administrative data to identify incident AGWs and total health service utilization (HSU) for AGWs
Anogenital wart case definition	Clinical diagnosis	First prescription of imiquimod with a level of reimbursement specific for AGWs	1) ICD-9 codes 078.11 OR 2) ICD-9 code 078.1, 078.10, 078.19 and therapeutic procedure or diagnosis of benign anogenital neoplasm OR 3) ≥ 1 prescription for AGW treatment and therapeutic procedure or diagnosis of benign anogenital neoplasm	OHIP database provides diagnostic and procedural codes from physician office visits that can be combined into algorithms to generate a probable outcome definition for AGWs
Outcome used in publication	Annual proportion of new clients with diagnosed AGW and adjust Odds Ratios for diagnosis of AGW in post-vaccination period	Incidence Rate Ratios and 95% CI's by age category	Annual proportion of insured individuals with diagnosed AGW	Average annual incidence of diagnosed anogenital warts in the population (by physician office visits) and RR of anogenital warts proportion (crude)

Numerator	Number of newly diagnosed AGW cases per year	Rates per 100,000 reported (unestimable by age category)	Number of patients with AGW diagnosis each year	Rates per 100,000 reported (unestimable numerator by age category)
Denominator	Total number of new patients per year	Rates per 100,000 reported (unestimable by age category)	Total number of clients enrolled in in health insurance plans each year	Rates per 100,000 reported (unestimable denominator by age category)
Potential for information bias: Errors in the identification of diagnosed AGW cases during the pre and post-vaccination period	Low AGW are directly diagnosed by physicians	High Surrogate measure used. Changes in presciption patterns may have altered identification of AGWs	Medium Sensitivity/specificity of algorithm to correctly identify diagnosed AGW not specified However, unlikely to change over time	Low
Risk of confounding				
Potential confounders considered	Analysis stratified by vaccination period, age, gender, MSM and risk groups; logistic regression adjusted for number of sexual partners in past 12 months.	Only stratified by age and sex. Other confounders not controlled for.	Analysis stratified by age, gender, region, and insurance plan type	A number of factors that could have influenced the observed trends aside from the HPV vaccine program. For example, the increasing use of urine screening for chlamydia as opposed to gynecological exam with swabs may have reduced the number of AGW cases diagnosed incidentally.
Potential for confounding: Changes in AGW between the pre and post-vaccination periods could be diluted/exacerbated by other variables	Low/medium. Other factors may be unaccounted for including changing demographics, however attempt made at controlling for confounders.	Medium/High	Medium Other factors could potentially cause changes in AGW frequency over time (e.g., changes in sexual activity, health seeking behaviour)	Medium/High
External validity				
External validity: Results can be generalized to the population at the country/region level†	Low. MSHC primarily targets individuals at high risk of STIs; absolute proportion of individuals with AGW may not reflect community as a whole	High Nationally representative sample	Medium/High The Truven Health Analytics contains data from 100 health insurance plan throughout the US (n=13 million in 2010). Results could be different for uninsured individuals	High Nationally representative sample

Study	Harrison, 2014 ⁽³²²⁾	Howell-Jones, 2013 ⁽³²³⁾	Leval, 2012 ⁽³²⁴⁾	Liu, 2014 ⁽³²⁵⁾
Funding	BEACH project - funded by the Australian Government Department of Health and Ageing along with many other co-funders (including industry funding)	Public Health England	National Research School in Health Care Sciences, Strategic Research Program (Karolinska Institutet), Erasmus Programme	Australian National Health and Medical Research Council (NHMRC)
Risk of selection bias				
Subjects included in the study	Primary care encounters	Health provider/based: Women diagnosed at Genitourinary medicines (GUM) and England population from national statistics	Population-based: Sweden population from Statistics Sweden	An Australia-wide survey of women
Potential for selection bias: Changes in the study population characteristics between the pre- and post- vaccination periods	Medium While a nationally representative sample, authors note change (increase) in chlamydia over time.	Low/Medium Possible changes in GUM services clientele in the pre- and post-vaccination periods	Low Entire population of Sweden	Medium While a nationally representative sample, protocols between two sampling periods not identical (e.g., mobile telephone calling in later period and fixed line in earlier period)
Risk of information bias				
Data source	Continuous cross-sectional study	Genitourinary Medicine Clinic Activity Dataset (GUMCAD) (diagnoses at GUM clinics nationally	National patient register, Prescribed drug register	Survey
Anogenital wart case definition	Genital warts were defined as ICPC 2 codes Y76 for males and X91 for females.	Clinical diagnosis	ICD-10 code A63 OR prescription of Imiquimod or Podophyllotoxin	Self-reported AGW
Outcome used in publication	Reduction in genital warts per 100,000 encounters	Annual incidence rate of GUM- diagnosed AGW in the population	Annual incidence rate of diagnosed AGW in the population	OR's from logistic regression adjusting for age and other factors in addition to frequencies.

Numerator	Number of newly diagnosed AGW cases	Number of first diagnosed AGW cases since 2006, each year	Number of newly diagnosed AGW cases each year, (washout period of 6 months)	Number of women ever- diagnosed AGW
Denominator	Total number of encounters	Annual population estimates	Annual population estimates	Total number of women surveyed
Potential for information bias: Errors in the identification of diagnosed AGW cases during the pre and post- vaccination period	Low AGW are directly diagnosed by physicians	Low AGW are directly diagnosed by physicians in GUM clinics	Medium Sensitivity/specificity of algorithm to correctly identify diagnosed AGW not specified, unlikely to change over time unless awareness is associated with likelihood of including code	Medium/high Self-reported data
Risk of confounding				
Potential confounders considered	Stratified by age, sex, vaccination period. Large increase in other STI diagnoses	Analysis stratified by age and gender, and adjusted for chlamydia diagnoses and area	Analysis stratified by age and gender	Adjustments made. ORs were adjusted for age, country of birth, state of residence, education, Aboriginality; ORs for warts were additionally adjusted for chlamydia.
Potential for confounding: Changes in AGW between the pre and post-vaccination periods could be diluted/exacerbated by other variables	Medium/high. Other factors unaccounted for	Medium Other factors could potentially cause changes in AGW frequency over time (e.g., changes in sexual activity, health seeking behaviour)	Medium Other factors could potentially cause changes in AGW frequency over time (e.g., changes in sexual activity); data suggesting increasing sexual activity over time in Sweden	Low
External validity				
External validity: Results can be generalized to the population at the country/region level†	High Nationally representative sample.	Medium/High About 95% of AGW diagnoses are made in GUM clinics (~85% sample of national data used)	High Entire population	High Nationally representative sample.

Study	Lurie, 2017 ⁽³²⁶⁾	Mikolajczyk, 2013 ⁽³²⁷⁾	Smith, 2015 ⁽³²⁹⁾
Funding	Unclear (Conflict of Interests include honoraria from GSK and MSD)	Sanofi-Pasteur MSD	National Health and Medical Research Council Australia
Risk of selection bias			
Subjects included in the study	Entire Maccabi Healthcare Services population (one of four publicly funded insurance providers in Israel)	Health provider/insurance-based : Enrollees in 1 large health insurance company across Germany	All hospital admissions in Australia
Potential for selection bias: Changes in the study population characteristics between the pre- and post- vaccination periods	Low (complete population)	Low Unlikely change in enrollees of insurance plans between the pre- and post- vaccination periods	Medium Possible increase in out-of-hospital treatment of AGW over time period reported by authors.
Risk of information bias			
Data source	Medical records database (includes all outpatient encounters)	German Pharmaco-epidemiological research database	National Hospital Morbidity Database (a comprehensive data set of admissions to virtually all public and private hospitals in Australia)
Anogenital wart case definition	Diagnosis of AGW	ICD-10 code A63.0	All NHMD admissions between 1 July 1999 and 30 June 2011 that included ICD-10-AM code A63.0 (anogenital warts) as a main or contributory diagnosis were included.
Outcome used in publication	Frequency of AGW	Annual incidence rate of diagnosed AGW among insured individuals	EAPC AGW diagnosis (Poisson and negative binomial regression); crude frequency of AGW rate and rate per 100,000
Numerator	Number of AGW diagnoses	Number of newly diagnosed case each year, (washout period of 12 months)	Frequency of AGW hospital admission
Denominator	Total population covered	Total number of clients of 1 large insurance company each year	Rate per 100,000
Potential for information bias: Errors in the	Low	Medium Sensitivity/specificity of algorithm to	Low

identification of diagnosed AGW cases during the pre and post-vaccination period Risk of confounding		correctly identify diagnosed AGW not specified, unlikely to change over time unless awareness is associated with likelihood of including code	
Potential confounders considered	Stratified by age and sex	Analysis stratified by age and gender	Stratified by age and sex. Subgroup analysis by ethnicity, MSM and cervical screening
Potential for confounding: Changes in AGW between the pre and post-vaccination periods could be diluted/exacerbated by other variables	Medium. Other factors may have altered disease rates in population	Medium Other factors could potentially cause changes in AGW frequency over time (e.g., changes in sexual activity, health seeking behaviour)	Medium/high. A possible explanation for the observed decline is that treatments for warts (eg, topical treatments or other nonsurgical methods) may have been increasingly performed outside of hospital settings over the period after NHVP implementation
External validity			
External validity: Results can be generalized to the population at the country/region level†	High Complete population.	Medium/High The insurance plan includes > 6million individuals, 8% of the German population and is demographically representative. Results could be different in uninsured individuals	High Complete national data

†For external validity, high is good

C.3. Risk of Bias: Cervical Intraepithelial Neoplasia (CIN) 2+

Study	Brotherton, 2011 ⁽³³¹⁾	Ogilvie, 2015 ⁽³³⁰⁾	Baldur-Felskov, 2014 ⁽³³²⁾	Baldur-Felskov, 2015 ⁽³³³⁾
Funding	None	Grant sponsor: BC Centre for Disease Control Foundation for Public and Population Health	Mermaid project (MERMAID II)	Mermaid project (MERMAID II)
Risk of selection bias				
Subjects included in the study	Population-based: Women included in the Victorian Cervical Cytology Registry	Population-based: Cervical Cancer Screening Programme database (British Columbia state)	Nationwide Pathology Data Bank: all cervical specimens in Denmark	Danish Cancer Registry (nationwide database)
Potential for selection bias: Changes in the study population characteristics between the pre- and post-vaccination periods	Low	Low	Low	Low
Risk of information bias				
CIN2+ diagnosis	Histopathological. The registry receives data from almost all cytology and cervical histopathology taken in Australia	Histopathological.	Histopathological. The data bank receives data from almost all cytology and cervical histopathology taken in Denmark	Histopathological.
Outcome used in publication	Annual incidence of high grade lesions	Incidence rate ratios comparing pre- and post-vaccination periods	EAPC from Poisson model of CIN2+ or Atypia	EAPC from Poisson regression model
Potential for information bias: Errors in the identification of pre- cancerous cervical lesions during the pre and post-vaccination period	Medium Sensitivity/specificity may change after vaccination	Medium Sensitivity/specificity may change after vaccination	Medium Sensitivity/specificity may change after vaccination	Low Histopathological diagnosis of carcinoma would not have changed
Risk of confounding				

Potential confounders considered	Analysis stratified by age	Analysis stratified by age	Analysis stratified by age	Analysis stratified by age
Potential for confounding: Changes in precancerous between pre and post-vaccination periods could be diluted/exacerbated by other variables	Medium/High: Other factors could potentially cause changes in the incidence of precancerous cervical lesions (e.g., changes in screening guidelines, sexual activity). Changes in screening guidelines documented in 2006	Medium/High: Other factors could potentially cause changes in the incidence of precancerous cervical lesions (e.g., changes in screening guidelines, sexual activity).	Medium/High: Other factors could potentially cause changes in the incidence of precancerous cervical lesions (e.g., changes in screening guidelines, sexual activity). No information on individual women's HPV vaccination status or risk factors	Medium/High: Other factors could potentially cause changes in the incidence of cancer and CIN3
External validity				
External validity: Results can be generalized to the population at the country/region level†	Medium/High. Women participating in screening may not be representative of the overall population (e.g., different vaccination coverage)	Medium/High. Women participating in screening may not be representative of the overall population (e.g., different vaccination coverage)	Medium/High. Women participating in screening may not be representative of the overall population (e.g., different vaccination coverage).	Medium/High. Women participating in screening may not be representative of the overall population (e.g., different vaccination coverage)

†For external validity, high is good

Appendix 5E:

List of studies included in this review

- 1. Ali H, Donovan B, Wand H, Read TR, Regan DG, Grulich AE, et al. Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. BMJ (Clinical research ed). 2013;346:f2032.
- 2. Baandrup L, Blomberg M, Dehlendorff C, Sand C, Andersen KK, Kjaer SK. Significant decrease in the incidence of genital warts in young Danish women after implementation of a national human papillomavirus vaccination program. Sexually transmitted diseases. 2013;40(2):130-5.
- 3. Baldur-Felskov B, Dehlendorff C, Junge J, Munk C, Kjaer SK. Incidence of cervical lesions in Danish women before and after implementation of a national HPV vaccination program. Cancer Causes and Control. 2014;25(7):915-22.
- 4. Baldur-Felskov B, Munk C, Nielsen TS, Dehlendorff C, Kirschner B, Junge J, et al. Trends in the incidence of cervical cancer and severe precancerous lesions in Denmark, 1997-2012. Cancer causes & control: CCC. 2015;26(8):1105-16.
- 5. Bauer HM, Wright G, Chow J. Evidence of human papillomavirus vaccine effectiveness in reducing genital warts: an analysis of California public family planning administrative claims data, 2007-2010. American journal of public health. 2012;102(5):833-5.
- 6. Bollerup S, Baldur-Felskov B, Blomberg M, Baandrup L, Dehlendorff C, Kjaer SK. Significant reduction in the incidence of genital warts in young men 5 years into the danish human papillomavirus vaccination program for girls and women. Sexually transmitted diseases. 2016;43(4):238-42.
- 7. Brotherton JM, Fridman M, May CL, Chappell G, Saville AM, Gertig DM. Early effect of the HPV vaccination programme on cervical abnormalities in Victoria, Australia: an ecological study. Lancet (London, England). 2011;377(9783):2085-92.
- 8. Cameron RL, Kavanagh K, Pan J, Love J, Cuschieri K, Robertson C, et al. Human papillomavirus prevalence and herd immunity after introduction of vaccination program, Scotland, 2009–2013. Emerging Infectious Diseases. 2016;22(1):56-64.
- 9. Canvin M, Sinka K, Hughes G, Mesher D. Decline in genital warts diagnoses among young women and young men since the introduction of the bivalent HPV (16/18) vaccination programme in England: An ecological analysis. Sexually Transmitted Infections. 2017;93(2):125-8.

- 10. Chow EP, Read TR, Wigan R, Donovan B, Chen MY, Bradshaw CS, et al. Ongoing decline in genital warts among young heterosexuals 7 years after the Australian human papillomavirus (HPV) vaccination programme. Sexually transmitted infections. 2015;91(3):214-9.
- 11. Chow EPF, Danielewski JA, Fehler G, Tabrizi SN, Law MG, Bradshaw CS, et al. Human papillomavirus in young women with Chlamydia trachomatis infection 7 years after the Australian human papillomavirus vaccination programme: A cross-sectional study. The Lancet Infectious Diseases. 2015;15(11):1314-23.
- 12. Chow EPF, Machalek DA, Tabrizi SN, Danielewski JA, Fehler G, Bradshaw CS, et al. Quadrivalent vaccine-targeted human papillomavirus genotypes in heterosexual men after the Australian female human papillomavirus vaccination programme: a retrospective observational study. The Lancet Infectious Diseases. 2017;17(1):68-77.
- 13. Cummings T, Zimet GD, Brown D, Tu W, Yang Z, Fortenberry JD, et al. Reduction of HPV infections through vaccination among at-risk urban adolescents. Vaccine. 2012;30(37):5496-9.
- 14. Dominiak-Felden G, Gobbo C, Simondon F. Evaluating the early benefit of quadrivalent HPV vaccine on genital warts in Belgium: A cohort study. PLoS ONE. 2015;10(7).
- 15. Dunne EF, Naleway A, Smith N, Crane B, Weinmann S, Braxton J, et al. Reduction in human papillomavirus vaccine type prevalence among young women screened for cervical cancer in an integrated US healthcare delivery system in 2007 and 2012-2013. Journal of Infectious Diseases. 2015;212(12):1970-5.
- 16. Flagg EW, Schwartz R, Weinstock H. Prevalence of anogenital warts among participants in private health plans in the United States, 2003-2010: potential impact of human papillomavirus vaccination. American journal of public health. 2013;103(8):1428-35.
- 17. Guerra FM, Rosella LC, Dunn S, Wilson SE, Chen C, Deeks SL. Early impact of Ontario's human papillomavirus (HPV) vaccination program on anogenital warts (AGWs): A population-based assessment. 2016;34(39):4678-83.
- 18. Harrison C, Britt H, Garland S, Conway L, Stein A, Pirotta M, et al. Decreased management of genital warts in young women in Australian general practice post introduction of national HPV vaccination program: results from a nationally representative cross-sectional general practice study. PLoS One. 2014;9(9):e105967.
- 19. Howell-Jones R, Soldan K, Wetten S, Mesher D, Williams T, Gill ON, et al. Declining genital Warts in young women in england associated with HPV 16/18 vaccination: an ecological study. The Journal of infectious diseases. 2013;208(9):1397-403.

- 20. Kahn JA, Brown DR, Ding L, Widdice LE, Shew ML, Glynn S, et al. Vaccine-type human papillomavirus and evidence of herd protection after vaccine introduction. Pediatrics. 2012;130(2):e249-56.
- 21. Kahn JA, Widdice LE, Ding L, Huang B, Brown DR, Franco EL, et al. Substantial Decline in Vaccine-Type Human Papillomavirus (HPV) among Vaccinated Young Women during the First 8 Years after HPV Vaccine Introduction in a Community. Clinical Infectious Diseases. 2016;63(10):1281-7.
- 22. Kavanagh K, Pollock KG, Potts A, Love J, Cuschieri K, Cubie H, et al. Introduction and sustained high coverage of the HPV bivalent vaccine leads to a reduction in prevalence of HPV 16/18 and closely related HPV types. British journal of cancer. 2014;110(11):2804-11.
- 23. Leval A, Herweijer E, Arnheim-Dahlstrom L, Walum H, Frans E, Sparen P, et al. Incidence of genital warts in Sweden before and after quadrivalent human papillomavirus vaccine availability. The Journal of infectious diseases. 2012;206(6):860-6.
- 24. Liu B, Donovan B, Brotherton JM, Saville M, Kaldor JM. Genital warts and chlamydia in Australian women: comparison of national population-based surveys in 2001 and 2011. Sexually transmitted infections. 2014;90(7):532-7.
- 25. Lurie S, Mizrachi Y, Chodick G, Katz R, Schejter E. Impact of quadrivalent human papillomavirus vaccine on genital warts in an opportunistic vaccination structure. Gynecologic Oncology. 2017;146(2):299-304.
- 26. Markowitz LE, Hariri S, Lin C, Dunne EF, Steinau M, McQuillan G, et al. Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003-2010. The Journal of infectious diseases. 2013;208(3):385-93.
- 27. Mesher D, Panwar K, Thomas SL, Beddows S, Soldan K. Continuing reductions in HPV 16/18 in a population with high coverage of bivalent HPV vaccination in England: An ongoing cross-sectional study. BMJ Open. 2016;6(2).
- 28. Mesher D, Soldan K, Howell-Jones R, Panwar K, Manyenga P, Jit M, et al. Reduction in HPV 16/18 prevalence in sexually active young women following the introduction of HPV immunisation in England. Vaccine. 2013;32(1):26-32.
- 29. Mikolajczyk RT, Kraut AA, Horn J, Schulze-Rath R, Garbe E. Changes in incidence of anogenital warts diagnoses after the introduction of human papillomavirus vaccination in Germany-an ecologic study. Sexually transmitted diseases. 2013;40(1):28-31.

- 30. Ogilvie GS, Naus M, Money DM, Dobson SR, Miller D, Krajden M, et al. Reduction in cervical intraepithelial neoplasia in young women in British Columbia after introduction of the HPV vaccine: An ecological analysis. International Journal of Cancer. 2015;137(8):1931-7.
- 31. Sando N, Kofoed K, Zachariae C, Fouchard J. A reduced national incidence of anogenital warts in young Danish men and women after introduction of a national quadrivalent human papillomavirus vaccination programme for young women--an ecological study. Acta dermato-venereologica. 2014;94(3):288-92.
- 32. Smith MA, Liu B, McIntyre P, Menzies R, Dey A, Canfell K. Fall in genital warts diagnoses in the general and indigenous Australian population following implementation of a national human papillomavirus vaccination program: analysis of routinely collected national hospital data. The Journal of infectious diseases. 2015;211(1):91-9.
- 33. Söderlund-Strand A, Uhnoo I, Dillner J. Change in population prevalences of human papillomavirus after initiation of vaccination: The high-throughput HPV monitoring study. Cancer Epidemiology Biomarkers and Prevention. 2014;23(12):2757-64.
- 34. Sonnenberg P, Clifton S, Beddows S, Field N, Soldan K, Tanton C, et al. Prevalence, risk factors, and uptake of interventions for sexually transmitted infections in Britain: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet (London, England). 2013;382(9907):1795-806.
- 35. Tabrizi SN, Brotherton JM, Kaldor JM, Skinner SR, Cummins E, Liu B, et al. Fall in human papillomavirus prevalence following a national vaccination program. The Journal of infectious diseases. 2012;206(11):1645-51.
- 36. Tanton C, Mesher D, Beddows S, Soldan K, Clifton S, Panwar K, et al. Human papillomavirus (HPV) in young women in Britain: Population-based evidence of the effectiveness of the bivalent immunisation programme and burden of quadrivalent and 9-valent vaccine types. Papillomavirus research (Amsterdam, Netherlands). 2017;3:36-41.
- 37. Wilson AR, Welch RJ, Hashibe M, Greenwood J, Jackson B, She RC. Surveillance of human papilloma virus using reference laboratory data for the purpose of evaluating vaccine impact. Online journal of public health informatics. 2014;6(3):e194.

List of studies excluded from this review

1. Arbyn M, Broeck DV, Benoy I, Bogers J, Depuydt C, Praet M, et al. Surveillance of effects of HPV vaccination in Belgium. Cancer Epidemiology. 2016;41:152-8. Justification: comparison is vaccinated versus unvaccinated in postvaccination period

- 2. Bianchi S, Boveri S, Igidbashian S, Amendola A, Urbinati AM, Frati ER, et al. Chlamydia trachomatis infection and HPV/Chlamydia trachomatis co-infection among HPV-vaccinated young women at the beginning of their sexual activity. Archives of gynecology and obstetrics. 2016;294(6):1227-33. *Justification: comparison is vaccinated versus unvaccinated*
- 3. Brisson M, Bénard É, Drolet M, Bogaards JA, Baussano I, Vänskä S, et al. Population-level impact, herd immunity, and elimination after human papillomavirus vaccination: a systematic review and meta-analysis of predictions from transmission-dynamic models. The Lancet Public Health. 2016;1(1):e8-e17. *Justification: not time-trend study; meta-analysis*
- 4. Brotherton JM, Gertig DM, May C, Chappell G, Saville M. HPV vaccine impact in Australian women: ready for an HPV-based screening program. The Medical journal of Australia. 2016;204(5):184-e1. *Justification: full text unavailable; insufficient information in abstract*
- 5. Brotherton JML, Giuliano AR, Markowitz LE, Dunne EF, Ogilvie GS. Monitoring the impact of HPV vaccine in males-Considerations and challenges. Research. 2016;2:106-11. *Justification: not time-trend study a review*
- 6. Bruni L, Diaz M, Barrionuevo-Rosas L, Herrero R, Bray F, Bosch FX, et al. Global estimates of human papillomavirus vaccination coverage by region and income level: A pooled analysis. The Lancet Global Health. 2016;4(7):e453-e63. *Justification: not time-trend study*
- 7. Canfell K. HPV vaccination in Australia: Impact on cervical screening. Acta Cytologica. 2016;60:56. *Justification: conference abstract only*
- 8. Canvin M, Sinka K, Hughes G, Mesher D. Decline in genital warts diagnoses among young women and young men since the introduction of the bivalent HPV (16/18) vaccination programme in England: An ecological analysis. Sexually Transmitted Infections. 2017;93(2):125-8. *Justification: Post-vaccination period only*
- 9. Capra G, Giovannelli L, Matranga D, Bellavia C, Guarneri MF, Fasciana T, et al. Potential impact of a nonavalent HPV vaccine on HPV related low-and high-grade cervical intraepithelial lesions: A referral hospital-based study in Sicily. Human Vaccines and Immunotherapeutics. 2017:1-5. *Justification: not time-trend study; 9-versus 4-valent*
- 10. Carozzi FM, Ocello C, Burroni E, Faust H, Zappa M, Paci E, et al. Effectiveness of HPV vaccination in women reaching screening age in Italy. Journal of Clinical Virology. 2016;84:74-81. *Justification: not time-trend study*

- 11. Chanal J, Fouere S, Yassir-Oria F, Spenatto N, Bouscarat F, Picot E, et al. [CONDYDAV: A multicentre observational study of patients presenting external genital warts in France]. Annales de dermatologie et de venereologie. 2016;143(11):675-81. *Justification: postvaccination period only*
- 12. Chandler EL, Ding L, Widdice L, Thomas R, Bernstein DI, Brown DR, et al. Epidemiology of anogenital human papillomavirus (HPV) among 13-26 year-old young men after HPV vaccine introduction. Journal of Adolescent Health. 2016;58(2):S117-S8. *Justification: postvaccination period only*
- 13. Cocchio S, Baldovin T, Bertoncello C, Buja A, Furlan P, Saia M, et al. Decline in hospitalization for genital warts in the Veneto region after an HPV vaccination program: an observational study. BMC infectious diseases. 2017;17(1):249. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382454/
 - This citing was retrieved during our initial search, however only the abstract was located. It has come to our knowledge that since our initial search, the study has now been published in full.
- 14. Coleman H, O'Farrell N, Kapembwa M, Brook G, McSorley J. The impact of an HPV vaccination programme in young men who have sex with men (MSM) on clinical presentations with genital warts. Sexually Transmitted Infections. 2017;93:A3-A4. *Justification: MSM only*
- 15. Daugherty M, Byler T. HPV prevalence in males in the United States from penile swabs: Results from NHANES. Journal of Urology. 2017;197(4):e137-e8. *Justification: postvaccination period only*
- 16. Donken R, Bogaards JA, van der Klis FRM, Meijer CJLM, de Melker HE. An exploration of individual- and population-level impact of the 2-dose HPV vaccination schedule in pre-adolescent girls. Human Vaccines and Immunotherapeutics. 2016;12(6):1381-93. *Justification: not time-trend study*
- 17. Fischer S, Bettstetter M, Becher A, Lessel M, Bank C, Krams M, et al. Shift in prevalence of HPV types in cervical cytology specimens in the era of HPV vaccination. Oncology Letters. 2016;12(1):601-10. *Justification: postvaccination period only*
- 18. Flagg EW, Torrone E, Weinstock H. Prevalence of low-and high-grade cervical intraepithelial lesions among female participants in private health plans in the United States, 2007-2013: Ecologic evidence of population effectiveness of human papillomavirus vaccination. Sexually Transmitted Infections. 2015;91:A167-A8. *Justification: Paper unobtainable*
- 19. Flagg EW, Torrone EA, Weinstock H. Ecological Association of Human Papillomavirus Vaccination with Cervical Dysplasia Prevalence in the United States, 2007-2014.

- American journal of public health. 2016;106(12):2211-8. *Justification: Paper unobtainable*
- 20. Gargano JW, Unger ER, Liu G, Steinau M, Meites E, Dunne E, et al. Prevalence of genital human papillomavirus in males, United States, 2013-2014. Journal of Infectious Diseases. 2017;215(7):1070-9. *Justification: not time-trend study*
- 21. Grün N, Ährlund-Richter A, Franzén J, Mirzaie L, Marions L, Ramqvist T, et al. Follow-up on oral and cervical human papillomavirus prevalence 2013-2015 in youth at a youth clinic in Stockholm, Sweden. Infectious Diseases. 2016;48(2):169-70. *Justification: Paper unobtainable*
- 22. Guerra FM, Rosella LC, Dunn S, Wilson SE, Chen C, Deeks SL. Health service utilisation for anogenital warts in Ontario, Canada prior to the human papillomavirus (HPV) vaccine programme introduction: A retrospective longitudinal population-based study. BMJ Open. 2016;6(3). *Justification: prevaccination period only*
- 23. Han JJ, Beltran TH, Song JW, Klaric J, Choi YS. Prevalence of Genital Human Papillomavirus Infection and Human Papillomavirus Vaccination Rates Among US Adult Men: National Health and Nutrition Examination Survey (NHANES) 2013-2014. JAMA oncology. 2017;3(6):810-6. *Justification: postvaccination period only*
- 24. Hariri S, Johnson ML, Bennett NM, Bauer HM, Park IU, Schafer S, et al. Population-based trends in high-grade cervical lesions in the early human papillomavirus vaccine era in the United States. Cancer. 2015;121(16):2775-81. *Justification: Post-vaccination period only*
- 25. Heard I, Tondeur L, Arowas L, Demazoin M, Falguieres M, Parent Du Chatelet I. Effectiveness of Human Papillomavirus Vaccination on Prevalence of Vaccine Genotypes in Young Sexually Active Women in France. The Journal of infectious diseases. 2017;215(5):757-63. *Justification: comparison is vaccinated versus unvaccinated*
- 26. Herweijer E, Sundström K, Ploner A, Uhnoo I, Sparén P, Arnheim-Dahlström L. Quadrivalent HPV vaccine effectiveness against high-grade cervical lesions by age at vaccination: A population-based study. International Journal of Cancer. 2016;138(12):2867-74. *Justification: not time-trend study*
- 27. Hirth J, Laz TH, Kuo YF, McGrath C, Starkey J, Rupp R, et al. Regional variations in vaginal HPV prevalence and vaccination among females across time in NHANES (2003-2012). Journal of Women's Health. 2016;25(4):A16. *Justification: Paper unobtainable*
- 28. Judlin P, Jacquard AC, Carcopino X, Aubin F, Dahlab A, Mistretta F, et al. Potential impact of the human papillomavirus vaccine on the incidence proportion of genital

- warts in French women (EFFICAE study): A multicentric prospective observational study. Sexual Health. 2016;13(1):49-54. *Justification: Paper unobtainable*
- 29. Kliewer E MS, Demers AA, Lambert P, Musto G. Quadrivalent HPV vaccination and the incidence of anogenital warts in Manitoba, Canada.. 28th International Papillomavirus Conference; San Juan, Puerto Rico. Nov 30–Dec 6, 2012; Abstract E07-663. 2012. *Justification: full text unavailable (conference proceeding); included in Drolet 2014*
- 30. Ladner J, Besson MH, Audureau E, Rodrigues M, Saba J. Experiences and lessons learned from 29 HPV vaccination programs implemented in 19 low and middle-income countries, 2009-2014. BMC health services research. 2016;16(1):575. *Justification: mixed methods postvaccination survey*
- 31. Lamb F, Herweijer E, Ploner A, Uhnoo I, Sundström K, Sparén P, et al. Timing of two versus three doses of quadrivalent HPV vaccine and associated effectiveness against condyloma in Sweden: A nationwide cohort study. BMJ Open. 2017;7(6). *Justification: timing of vaccination in a cohort study*
- 32. Largeron N, Petry KU, Jacob J, Bianic F, Anger D, Uhart M. An estimate of the public health impact and cost-effectiveness of universal vaccination with a 9-valent HPV vaccine in Germany. Expert review of pharmacoeconomics & outcomes research. 2017;17(1):85-98. *Justification: modelling study*
- 33. Liaw KL, Kjaer SK, Nygard M, Dillner J. Utilization of nordic countries national registries to monitor the impact of HPV vaccination. Pharmacoepidemiology and Drug Safety. 2014;23:356. *Justification: postvaccination period only*
- 34. Luxembourg A, Kjaer SK, Nygard M, Ellison MC, Group T, Marshall JB, et al. Design of a long-term follow-up effectiveness, immunogenicity and safety study of women who received the 9-valent human papillomavirus vaccine. Contemporary clinical trials. 2017;52:54-61. *Justification: design for a RCT*
- 35. Markowitz LE, Liu G, Hariri S, Steinau M, Dunne EF, Unger ER. Prevalence of HPV After Introduction of the Vaccination Program in the United States. Pediatrics. 2016;137(3):e20151968. *Justification: paper unobtainable*
- 36. McCarthy WA, Hui Y, Diaz-Gomez BL, Ou J, Paquette C, Sung CJ, et al. Usual type endocervical adenocarcinoma/AIS incidence and distribution of high-risk HPV genotypes between 2007-2010 and 2011-2015. Laboratory Investigation. 2017;97:300A. *Justification: Conference abstract only, unclear link to vaccination programme.*
- 37. Meites E, Gorbach PM, Gratzer B, Panicker G, Steinau M, Collins T, et al. Monitoring for human papillomavirus vaccine impact among gay, bisexual, and other men who

- have sexwith men-United States, 2012-2014. Journal of Infectious Diseases. 2016;214(5):689-96. *Justification: MSM only*
- 38. Merckx M, Broeck DV, Benoy I, Depuydt C, Weyers S, Arbyn M. Early effects of human papillomavirus vaccination in Belgium. European Journal of Cancer Prevention. 2015;24(4):340-2. *Justification: Data from the postvaccination period only. Vaccine was introduced in 2007 Belgium, fully reimbursed 2008. Opportunistic until 2010 school-based programme*
- 39. Merckx M, Weyers S, Benoy I, Arbyn M, Van Den Broeck D. Surveillance of the effects of vaccination against HPV. European Journal of Contraception and Reproductive Health Care. 2014;19:S36. *Justification: Abstract only*
- 40. Mesher D, King E, Sonnenberg P, Linley E, Beddows S, Soldan K, et al. HPV 16 and 18 seropositivity and DNA detection among men who have sex with men: Evidence for the potential benefit of vaccination. Sexually Transmitted Infections. 2017;93:A3. *Justification: MSM only*
- 41. Moscicki AB, Karalius B, Tassiopoulos K, Jacobson D, Patel K, Purswani MU, et al. HPV4 vaccine immunogenicity/effectiveness in perinatally HIV-infected (PHIV) youth. Topics in Antiviral Medicine. 2017;25(1):342s. *Justification: HIV positive only*
- 42. Navarro-Illana E, López-Lacort M, Navarro-Illana P, Vilata JJ, Diez-Domingo J. Effectiveness of HPV vaccines against genital warts in women from Valencia, Spain. 2017;35(25):3342-6. *Justification: Comparison is vaccinated vs unvaccinated in postvaccination period only*
- 43. Niccolai LM, Julian PJ, Meek JI, McBride V, Hadler JL, Sosa LE. Declining rates of high-grade cervical lesions in young women in Connecticut, 2008-2011. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2013;22(8):1446-50. Justification: All samples from post-vaccine era; vaccine available since 2006 (although uptake increased over time); included in Drolet 2014
- 44. Niccolai LM, Meek JI, Brackney M, Hadler JL, Sosa LE, Weinberger DM. Declines in HPV-associated high-grade cervical lesions after introduction of HPV vaccines in Connecticut, US, 2008-2015. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2017. *Justification: All samples from post-vaccine era; vaccine available since 2006 (although uptake increased over time)*
- 45. Nsouli-Maktabi H, Ludwig SL, Yerubandi UD, Gaydos JC. Incidence of genital warts among U.S. service members before and after the introduction of the quadrivalent human papillomavirus vaccine. Msmr. 2013;20(2):17-20. *Justification: full text unavailable (conference proceeding); included in Drolet 2014*

- 46. Oliphant J, Perkins N. Impact of the human papillomavirus (HPV) vaccine on genital wart diagnoses at Auckland Sexual Health Services. The New Zealand medical journal. 2011;124(1339):51-8. *Justification: full text unavailable (conference proceeding); included in Drolet 2014*
- 47. Oliphant J, Stewart J, Saxton P, Lo M, Perkins N, Ward D. Trends in genital warts diagnoses in New Zealand five years following the quadrivalent human papillomavirus vaccine introduction. The New Zealand medical journal. 2017;130(1452):9-16. *Justification: paper unobtainable*
- 48. Ozawa N, Ito K, Tase T, Metoki H, Yaegashi N. Beneficial effects of human papillomavirus vaccine for prevention of cervical abnormalities in Miyagi, Japan. Tohoku Journal of Experimental Medicine. 2016;240(2):147-51. *Justification: comparison is vaccinated versus unvaccinated*
- 49. Palmer TJ, McFadden M, Pollock KGJ, Kavanagh K, Cuschieri K, Cruickshank M, et al. HPV immunisation and cervical screening-confirmation of changed performance of cytology as a screening test in immunised women: A retrospective population-based cohort study. British Journal of Cancer. 2016;114(5):582-9. *Justification: comparison is vaccinated versus unvaccinated*
- 50. Perkins RB, Lin M, Wallington SF, Hanchate A. Impact of number of human papillomavirus vaccine doses on genital warts diagnoses among a National Cohort of U.S. Adolescents. Sexually Transmitted Diseases. 2017;44(6):365-70. *Justification: comparison is vaccinated versus unvaccinated*
- 51. Saccucci M, Ding L, Franco E, Bernstein DI, Brown D, Kahn JA. Epidemiologic trends in non-vaccine-type hpv after vaccine introduction: No evidence for type replacement but evidence for cross-protection. Journal of Adolescent Health. 2017;60(2):S18-S9. *Justification: paper unobtainable*
- 52. Silverberg M, Leyden W, Gregorich S, Huchko M, Kulasingam S, Kuppermann M, et al. Effectiveness of "catch-up" HPV vaccination on incident cervical neoplasia in a U.S. healthcare setting. Journal of Lower Genital Tract Disease. 2017;21(2):S16. *Justification: comparison is vaccinated versus unvaccinated*
- 53. Smith MA, Liu B, McIntyre P, Menzies R, Dey A, Canfell K. Trends in genital warts by socioeconomic status after the introduction of the national HPV vaccination program in Australia: Analysis of national hospital data. BMC Infectious Diseases. 2016;16(1). *Justification: Secondary analysis of Smith 2015 by socioeconomic status*
- 54. Tanaka H, Shirasawa H, Shimizu D, Sato N, Ooyama N, Takahashi O, et al. Preventive effect of human papillomavirus vaccination on the development of uterine cervical lesions in young Japanese women. The journal of obstetrics and gynaecology research. 2017. *Justification: comparison is vaccinated versus unvaccinated*

- 55. Tarney C, Pagan M, Klaric J, Beltran T, Han J. HPV vaccination does not provide herd immunity for unvaccinated women or cross-protection for nonvaccine HPV types. Obstetrics and Gynecology. 2016;127:4S. *Justification: paper unobtainable*
- 56. Tarney CM, Pagan M, Klaric J, Beltran T, Han JJ. Population impact of HPV vaccination in the United States. Gynecologic Oncology. 2016;141:24-5. *Justification: paper unobtainable*
- 57. Thompson LH, Nugent Z, Blanchard JF, Ens C, Yu BN. Increasing incidence of anogenital warts with an urban-rural divide among males in Manitoba, Canada, 1990-2011. BMC public health. 2016;16:219. *Justification: Comparison is rural vs urban divide, prevaccination period for boys only*
- 58. Willows K, Bozat-Emre S, Kliewer E, Mahmud S. Effectiveness of the Quadrivalent Human Papillomavirus Vaccine (QHPV) against Anogenital Warts (AGWs) in Manitoba, Canada: A population-based study. Pharmacoepidemiology and Drug Safety. 2016;25:473-4. *Justification: paper unobtainable*
- 59. Woestenberg PJ, King AJ, van der Sande MA, Donken R, Leussink S, van der Klis FR, et al. No evidence for cross-protection of the HPV-16/18 vaccine against HPV-6/11 positivity in female STI clinic visitors. The Journal of infection. 2017;74(4):393-400. *Justification: postvaccination period only*
- 60. Wrenn A, Tracht J, Eltoum IE. Assessing trends in the prevalence of HPV infection: A five year retrospective analysis of women screened at a large academic institution. Journal of the American Society of Cytopathology. 2016;5(5):S36. *Justification: conference abstract only*
- 61. Zeybek B, Rodriguez A. Comparison of long term impact and clinical outcomes of reduced dose vs standard dose quadrivalent human papillomavirus vaccine in the United States: A database study. Gynecologic Oncology. 2017;145:3-4. *Justification: conference abstract only*

Appendix 5F: Summary of Findings (GRADE) tables

Question: Is there evidence of a population-level reduction in HPV-related disease following HPV immunisation programme implementation, comparing the pre- and post-vaccination periods?

Setting: Any population for whom a HPV immunisation programme was implemented

Summary of Findings

	Certainty assessment						Sample size			
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Pre- vaccination	Post- vaccination	Effect	Certainty
1. HPV 16	5/18 infection in	girls (less th	nan 20 years of ag	ge)						
13	observational studies	serious ^a	not serious	not serious	not serious	publication bias not suspected	10,167	13,013	RR ^b ranged from 0.04 to 0.50	⊕⊕⊖⊖ LOW°
2. HPV 16	5/18 infection in	women (20	to 24 years of ag	e)						
11	observational studies	serious ^a	not serious	not serious	not serious	publication bias not suspected	14,696	17,337	RR ^b ranged from 0.12 to 1.40	⊕○○○ VERY LOW
3. HPV ty	pes 31/33/45/52	/58 in girls	(less than 20 yea	rs of age)						
12	observational studies	serious ^a	not serious	not serious	not serious	publication bias not suspected	9,796	12,613	RR ^b ranged from 0.67 to 1.62	⊕○○○ VERY LOW
4. HPV ty	pes 31/33/45/52	/58 in won	nen (20 to 24 year	rs of age)						
11	observational studies	serious ^a	not serious	not serious	not serious	publication bias not suspected	14,696	17,337	RR ^b ranged from 0.74 to 1.42	⊕○○○ VERY LOW
5. Anoge	5. Anogenital warts in girls (less than 20 years of age)									
10	observational studies	serious ^a	not serious	not serious	not serious	publication bias not suspected	9,140,390	12,917,924	RR ranged from 0.08 to 1.00	⊕○○○ VERY LOW

	Certainty assessment						Sample size			
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Pre- vaccination	Post- vaccination	Effect	Certainty
6. Anoge	nital warts in wo	men (20 +)			•	•				
11	observational studies	serious ^a	not serious	not serious	not serious	publication bias not suspected	13,542,421	27,609,812	RR ranged from 0.42 to 1.29	⊕○○○ VERY LOW
7. Anoge	nital warts in boy	s (less thar	n 20 years of age)	ļ.		· ·	!			ļ.
10	observational studies	serious ^a	not serious	not serious	not serious	publication bias not suspected	4,221,196	7,608,638	RR ranged from 0.21 to 1.57	⊕○○○ VERY LOW
8. Anoge	nital warts in me	n (20 +)								
10	observational studies	serious ^a	not serious	not serious	not serious	publication bias not suspected	12,062,360	22,961,127	RR ranged from 0.63 to 1.55	⊕○○○ VERY LOW
9. CIN2+	9. CIN2+ in women (less than 20 years of age)									<u> </u>
3	observational studies	serious ^a	not serious	not serious	not serious	publication bias not suspected	11,656,905	18,032,926	RR ranged from 0.14 to 0.69	⊕○○○ VERY LOW

RR: Risk ratio Explanations

a. In all studies, there was risk of confounding (changes in outcome between pre and post-vaccination periods could be diluted/exacerbated by other variables) and potential for selection bias (changes in the study population characteristics between the pre- and post-vaccination periods).
b. Prevalence ratios of HPV infection were obtained by dividing the prevalence of HPV infection in the post-vaccination period by that of the pre-vaccination period.
c. This outcome was upgraded from 'very low' to 'low' due to large magnitude of effect

Appendix 5G. EAPC from Guerra et al. 2016

The estimated annual percentage change (EAPC) in anogenital warts by sex and age groups from Guerra et al. 2016 is presented below.

Average annual percentage change in AGW incidence (pre-vaccination/post-vaccination era)					
Females					
15-17	-5.9 (p=0.20)				
18-20	-6.5 (p=0.03)				
21-23	-3.3 (p=0.18)				
24-26	+4.1 (p=0.15)				
Males					
15-17	+12 (p=0.04)				
18-20	+5.9 (p=0.33)				
21-23	+4.8 (p=0.11)				
24-26	+1.0 (p=0.77)				

Appendix 6

Appendix 6A: Search terms and results

Search terms related to safety were guided by published literature. (345)

PubMed

Date of search: 12.4.18

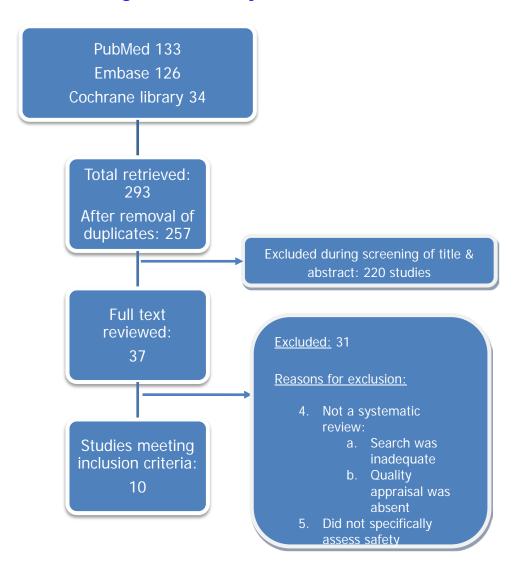
Search string: (((ae OR co OR de) OR safe OR safety OR side effect* OR tolerability OR toxicity OR adrs OR (adverse adj2 (effect OR effects OR reaction OR reactions OR event OR event OR outcome OR outcomes))) AND ((HPV vaccin*) OR (human papillomavirus vaccin*) OR (HPV immuni*) OR (human papillomavirus immuni*) OR (4-valent vaccine*) OR (2-valent vaccine))

[Results = 2,745]

[Filters applied: Systematic reviews, humans = 133 results]

Embase

Embase 12/4/18		Search Strings	Results
Searches	#1	('hpv' OR 'hpv'/exp OR hpv) AND vaccin* OR (('hpv' OR 'hpv'/exp OR hpv) AND immuni*) OR '4- valent vaccine' OR '4-valent vaccine'/exp OR 4- valent vaccine OR 'silgard' OR 'silgard'/exp OR silgard OR '2-valent vaccine' OR '2-valent vaccine'/exp OR 2-valent vaccine	19,072
	#2	'safety'/exp OR safety OR 'adverse event*' OR 'adverse drug reaction*' OR 'adrs' OR 'side effect*' OR 'monitor*' OR 'toxicity'/exp OR toxicity OR complication*	6,373,204
	#3	1 AND 2	5,524
	#4	#3 AND 'systematic review'/de	126


[Query(('safety'/exp OR safety OR 'adverse event*' OR 'adverse drug reaction*' OR 'adrs' OR 'side effect*' OR 'monitor*' OR 'toxicity'/exp OR toxicity OR complication*) AND (('hpv' OR 'hpv'/exp OR hpv) AND vaccin* OR (('hpv' OR 'hpv'/exp OR hpv) AND immuni*) OR '4-valent vaccine' OR '4-valent vaccine'/exp OR 4-valent vaccine OR 'silgard' OR 'silgard'/exp OR silgard OR '2-valent vaccine' OR '2-valent vaccine'/exp OR 2-valent vaccine)) AND 'systematic review'/exp

Mapped terms"systematic review" mapped to 'systematic review', term is exploded]

Cochrane library

Cochrane library 12/4/18		Search Strings	Results
Searches	#1	(HPV vaccine) or (HPV vaccination) or (human papillomavirus vaccine) or (human papillomavirus vaccation) or (HPV immunisation) or (human papillomavirus immunisation) or (human papillomavirus immunisation) or (human papillomavirus immunisation) or (4-valent vaccine)	760
	#2	safety or safe or 'adverse event' or 'adverse drug reaction' or 'adrs' or 'side effect' or 'monitor' or 'toxicity' or toxic or complication	272,220
	#3	1 AND 2	[Cochrane reviews: 27 Other reviews: 4 HTAs: 3]

Appendix 6B: Flow diagram for study selection

Appendix 6C: List of studies included in this review

- 1. Arbyn M, Xu L, Simoens C, Martin-Hirsch PPL. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database of Systematic Reviews. 2018(5).
- 2. Coelho PLS, Da Silva Calestini GL, Alvo FS, De Moura Freitas JM, Castro PMV, Konstantyner T. Safety of human papillomavirus 6, 11, 16 and 18 (recombinant): Systematic review and meta-analysis. Revista Paulista de Pediatria. 2015;33(4):474-82.
- 3. Costa APF, Cobucci RNO, Da Silva JM, Da Costa Lima PH, Giraldo PC, Gonçalves AK. Safety of human papillomavirus 9-valent vaccine: A meta-analysis of randomized trials. Journal of Immunology Research. 2017;2017.
- 4. Jacqueline Parsons PTM, Prof Michael Gold. Serious adverse events associated with HPV vaccination. Adelaide Health Technology Assessment, University of Adelaide. 2017.
- 5. Lu B, Kumar A, Castellsagué X, Giuliano AR. Efficacy and Safety of Prophylactic Vaccines against Cervical HPV Infection and Diseases among Women: A Systematic Review & Meta-Analysis. BMC Infectious Diseases. 2011;11.
- 6. Medeiros LR, Rosa DD, Da Rosa MI, Bozzetti MC, Zanini RR. Efficacy of human papillomavirus vaccines a systematic quantitative review. International Journal of Gynecological Cancer. 2009;19(7):1166-76.
- 7. Meggiolaro A, Migliara G, La Torre G. Association between Human Papilloma Virus (HPV) vaccination and risk of Multiple Sclerosis: A systematic review. Human vaccines & immunotherapeutics. 2018:1-9.
- 8. Ogawa Y, Takei H, Ogawa R, Mihara K. Safety of human papillomavirus vaccines in healthy young women: a meta-analysis of 24 controlled studies. Journal of pharmaceutical health care and sciences. 2017;3:18.
- 9. Rambout L, Hopkins L, Hutton B, Fergusson D. Prophylactic vaccination against human papillomavirus infection and disease in women: A systematic review of randomized controlled trials. CMAJ. 2007;177(5):469-79.
- 10. Setiawan D, Luttjeboer J, Pouwels KB, Wilschut JC, Postma MJ. Immunogenicity and safety of human papillomavirus (HPV) vaccination in Asian populations from six countries: A meta-analysis. Japanese Journal of Clinical Oncology. 2017;47(3):265-76.

Appendix 6D: List of studies excluded from this review

- 1. Angelo MG, David MP, Zima J, Baril L, Dubin G, Arellano F, et al. Pooled analysis of large and long-term safety data from the human papillomavirus-16/18-AS04-adjuvanted vaccine clinical trial programme. Pharmacoepidemiol Drug Saf. 2014;23(5):466-79. *Justification: not a Systematic Review*
- 2. Angioli R, Lopez S, Aloisi A, Terranova C, De Cicco C, Scaletta G, et al. Ten years of HPV vaccines: State of art and controversies. Critical Reviews in Oncology/Hematology. 2016;102:65-72. *Justification: not a Systematic Review*
- 3. Bonde U, Joergensen JS, Lamont RF, Mogensen O. Is HPV vaccination in pregnancy safe? Human Vaccines and Immunotherapeutics. 2016;12(8):1960-4. *Justification: not a Systematic Review*
- 4. Brinth L, Theibel AC, Pors K, Mehlsen J. Suspected side effects to the quadrivalent human papilloma vaccine. Danish Medical Journal. 2015;62(4):1-5. *Justification: not a Systematic Review*
- 5. Chandler RE, Juhlin K, Fransson J, Caster O, Edwards IR, Norén GN. Current Safety Concerns with Human Papillomavirus Vaccine: A Cluster Analysis of Reports in VigiBase®. Drug Safety. 2017;40(1):81-90. *Justification: not a Systematic Review*
- 8. De Vincenzo R, Conte C, Ricci C, Scambia G, Capelli G. Long-term efficacy and safety of human papillomavirus vaccination. International journal of women's health. 2014;6:999-1010. *Justification: not a Systematic Review*
- 9. Descamps D, Hardt K, Spiessens B, Izurieta P, Verstraeten T, Breuer T, et al. Safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for cervical cancer prevention: a pooled analysis of 11 clinical trials. Human vaccines. 2009;5(5):332-40. *Justification: not a Systematic Review*
- 10. Forinash AB, Yancey AM, Pitlick JM, Myles TD. Safety of the HPV Bivalent and Quadrivalent Vaccines During Pregnancy. The Annals of pharmacotherapy. 2011;45(2):258-62. *Justification: not a Systematic Review*
- 11. Gonçalves AK, Cobucci RN, Rodrigues HM, De Melo AG, Giraldo PC. Safety, tolerability and side effects of human papillomavirus vaccines: A systematic quantitative review. Brazilian Journal of Infectious Diseases. 2014;18(6):651-9. *Justification: Insufficient detail regarding quality appraisal of included studies given.*
- 12. Hawkes D, Benhamu J, Sidwell T, Miles R, Dunlop RA. Revisiting adverse reactions to vaccines: A critical appraisal of Autoimmune Syndrome Induced by Adjuvants (ASIA). Journal of Autoimmunity. 2015;59:77-84. *Justification: not HPV safety review (adjuvant)*
- 13. Huygen F, Verschueren K, McCabe C, Stegmann JU, Zima J, Mahaux O, et al. Investigating Reports of Complex Regional Pain Syndrome: An Analysis of HPV-16/18-

- Adjuvanted Vaccine Post-Licensure Data. EBioMedicine. 2015;2(9):1114-21. *Justification: Analysis of adverse event reports database (GSK)*
- 15. Jara LJ, García-Collinot G, Medina G, Cruz-Dominguez MP, Vera-Lastra O, Carranza-Muleiro RA, et al. Severe manifestations of autoimmune syndrome induced by adjuvants (Shoenfeld's syndrome). Immunologic Research. 2017;65(1):8-16. *Justification: not HPV safety review (adjuvant)*
- 16. Konstantyner T, Coelho PLS, Calestini GLDS, Alvo FS, Freitas JMDM, Castro PMV. Revista Paulista de Pediatria. 2015. *Justification: Duplicate of Coelho 2015 (Portuguese)*
- 17. La Torre G, de Waure C, Chiaradia G, Mannocci A, Capri S, Ricciardi W. The Health Technology Assessment of bivalent HPV vaccine 2-valent vaccine ® in Italy. Vaccine. 2010;28(19):3379-84. *Justification: HTA with SR of efficacy but not safety*
- 18. Loharikar A, Suragh TA, MacDonald NE, Balakrishnan MR, Benes O, Lamprianou S, et al. Anxiety-related adverse events following immunization (AEFI): A systematic review of published clusters of illness. Vaccine. 2018;36(2):299-305. *Justification: no quality appraisal; general review*
- 20. Luo W, Zhang SH, Zhou YZ, Wang C, Yang L, Qiu J. Safety and immunogenicity of quadrivalent HPV vaccine: A meta-analysis. Chinese Journal of Evidence-Based Medicine. 2015;15(1):47-53. *Justification: Cannot locate English text*
- 21. Macartney KK, Chiu C, Georgousakis M, Brotherton JML. Safety of human papillomavirus vaccines: A review. Drug Safety. 2013;36(6):393-412. *Justification: Not a systematic review with formal quality appraisal. General discussion of this paper included.*
- 22. Macki M, Dabaja AA. Literature review of vaccine-related adverse events reported from HPV vaccination in randomized controlled trials. Basic and clinical andrology. 2016;26:16. *Justification: not a Systematic Review (only 1 database searched and no quality appraisal)*
- 23. Mailand MT, Frederiksen JL. Vaccines and multiple sclerosis: a systematic review. Journal of Neurology. 2017;264(6):1035-50. *Justification: not a Systematic Review (only 1 database searched and no quality appraisal)*
- 24. Martínez-Lavín M, Amezcua-Guerra L. Serious adverse events after HPV vaccination: a critical review of randomized trials and post-marketing case series. Clinical Rheumatology. 2017;36(10):2169-78. *Justification: not a Systematic Review (only 1 database searched and no quality appraisal)*
- 26. Moreira ED, Jr., Block SL, Ferris D, Giuliano AR, Iversen OE, Joura EA, et al. Safety Profile of the 9-Valent HPV Vaccine: A Combined Analysis of 7 Phase III Clinical Trials. Pediatrics. 2016;138(2). *Justification: not a Systematic Review; Pooled analysis of 7 completed or ongoing studies*

- 27. Niyibizi J, Zanre N, Mayrand MH, Trottier H. The association between adverse pregnancy outcomes and maternal human papillomavirus infection: a systematic review protocol. Syst Rev. 2017;6(1):53. *Justification: protocol*
- 28. Noronha AS, Markowitz LE, Dunne EF. Systematic review of human papillomavirus vaccine coadministration. Vaccine. 2014;32(23):2670-4. *Justification: not a Systematic Review; unknown databases, no quality appraisal*
- 30. Pellegrino P, Radice S, Clementi E. Immunogenicity and safety of the human papillomavirus vaccine in patients with autoimmune diseases: A systematic review. Vaccine. 2015;33(30):3444-9. *Justification: not a Systematic Review; 1 database, no quality appraisal*
- 31. Rey-Ares L, Ciapponi A, Pichon-Riviere A. Efficacy and safety of human papilloma virus vaccine in cervical cancer prevention: Systematic review and meta-analysis. Archivos Argentinos de Pediatria. 2012;110(6):483-9. *Justification: Cannot locate English translation; no formal quality appraisal*
- 32. Sangar VC, Ghongane BB, Mathur G, Chowdhary AS. Safety and adverse events of prophylactic HPV vaccines among healthy women: A systematic review & meta analysis. International Journal of Pharmaceutical Sciences and Research. 2015;6(4):1779-91. *Justification: inadequate quality appraisal*
- 34. Signorelli C, Odone A, Ciorba V, Cella P, Audisio RA, Lombardi A, et al. Human papillomavirus 9-valent vaccine for cancer prevention: A systematic review of the available evidence. Epidemiology and Infection. 2017;145(10):1962-82. *Justification: inadequate quality appraisal*
- 35. Tan P, Wang X, Wei S, Liu Y, Wei Q, Dong Q. Efficacy and safety of prophylactic human papillomavirus vaccination in healthy males: A meta-analysis. Reviews in Medical Microbiology. 2015;26(4):143-53. *Justification: Cannot access full paper*
- 36. Tomljenovic L, Spinosa JP, Shaw CA. Human papillomavirus (HPV) vaccines as an option for preventing cervical malignancies: (How) effective and safe? Current Pharmaceutical Design. 2013;19(8):1466-87. *Justification: No details of search used*
- 37. Wacholder S, Chen BE, Wilcox A, Macones G, Gonzalez P, Befano B, et al. Risk of miscarriage with bivalent vaccine against human papillomavirus (HPV) types 16 and 18: pooled analysis of two randomised controlled trials. BMJ (Clinical research ed). 2010;340:c712. *Justification: not a Systematic Review*

Appendix 6E: Additional information on AMSTAR 2 appraisal tool

AMSTAR (A MeaSurement Tool to Assess systematic Reviews), originally published in 2007, is one of the most widely used instruments used to assess the quality of systematic reviews. (398) AMSTAR was designed as a practical critical appraisal tool for use by health professionals and policy makers who do not necessarily have advanced training in epidemiology, to enable them to carry out rapid and reproducible assessments of the quality of conduct of systematic reviews of randomised controlled trials of interventions. A modified version was validated externally and performed well against the global judgments of a panel of content experts. (399)

AMSTAR underwent further development to enable appraisal of systematic reviews of randomised and non-randomised studies of healthcare interventions. The revised instrument (AMSTAR 2) has an overall rating based on weaknesses in critical domains; AMSTAR 2 is not intended to generate an overall score.

Appendix 6E lists all items included in the AMSTAR 2 assessment tool.

Seven of the domains assessed in AMSTAR 2 have been highlighted as critical in the appraisal of study quality: (292)

- Protocol registered before commencement of the review
- Adequacy of the literature search
- Justification for excluding individual studies
- Risk of bias from individual studies being included in the review
- Appropriateness of meta-analytical methods
- Consideration of risk of bias when interpreting the results of the review)
- Assessment of presence and likely impact of publication bias.

The authors further propose a scheme for interpreting weaknesses detected in critical and non-critical items:

Rating overall confidence in the results of the review

1. High

No or one non-critical weakness: the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest

2. Moderate

More than one non-critical weakness*: the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review

3. Low

One critical flaw with or without non-critical weaknesses: the review has a critical flaw and may not provide an accurate and comprehensive summary of the available studies that address the question of interest

4. Critically low

More than one critical flaw with or without non-critical weaknesses: the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies

^{*}Additionally, multiple non-critical weaknesses may diminish confidence in the review and it may be appropriate to move the overall appraisal down from moderate to low confidence.

Appendix 6F: Additional information on GRADE quality of evidence assessment

GRADE identifies five key elements that can be used to rate confidence in the estimates of intervention effects. The criteria are:

- risk of bias
- inconsistency of results indirectness of evidence
- imprecision
- publication bias.

Assessing and combining these components determines the quality of evidence for each outcome of interest as:

- 'high' further research is very unlikely to change our confidence in this estimate of effect
- 'moderate' (further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate
- 'low' further research is likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate
- 'very low' any estimate of effect is very uncertain.

Appendix 6G: Quality appraisal of included reviews using the AMSTAR 2 tool

		Arbyn 2018	ADELAIDE HTA (Parsons 2017)	Coelho 2015	Costa 2017	Lu 2011
OVERA	LL RESULT	HIGH	LOW	CRITICALLY LOW	CRITICALLY LOW	CRITICALLY LOW
1.	Did the research questions and inclusion criteria for the review include the components of PICO?	Yes	Yes	Yes	Yes	No
2.	Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol?*	Yes	Yes/partial yes.	Yes	Yes	No
3.	Did the review authors explain their selection of the study designs for inclusion in the review?	No - did not explain why only RCTs	Yes	Yes	Yes	No
4.	Did the review authors use a comprehensive literature search strategy?*	Yes	Partial yes	Partial yes	Yes	Yes
5.	Did the review authors perform study selection in duplicate?	Yes	Unreported	Yes	Yes	Yes
6.	Did the review authors perform data extraction in duplicate?	Yes	Unreported	Yes	Unreported	Yes
7.	Did the review authors provide a list of excluded studies and justify the exclusions?*	Yes	No	No	No	No
8.	Did the review authors describe the included studies in adequate detail?	Yes	Yes	Partial yes	No – little information on comparator	Yes
		Arbyn 2018	ADELAIDE HTA (Parsons 2017)	Coelho 2015	Costa 2017	Lu 2011

9.	Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?*	Yes	Yes	Yes: Jadad scale	Yes: Jadad scale	Partial yes; Tool not specified; Allocation concealment and Blinding assessed
10.	Did the review authors report on the sources of funding for the studies included in the review?	Yes	Yes	No	No	Yes
11.	If meta-analysis was performed did the review authors use appropriate methods for statistical combination of results?*	Yes	Yes	No – heterogeneity not tested although mentioned in discussion	Yes (included only low risk of bias RCTs)	Yes (included only low risk of bias RCTs)
12.	If meta-analysis was performed, did the review authors assess the potential impact of RoB in individual studies on the results of the meta- analysis or other evidence synthesis?	Yes	Yes: Overall low RoB RCTs	Yes, by Jadad scale	Yes (included only low risk of bias RCTs)	Yes (included only low risk of bias RCTs)
13.	Did the review authors account for RoB in individual studies when interpreting/discussing the results of the review?*	Yes	Yes: Overall low RoB RCTs	Yes, by Jadad scale	Yes (included only low risk of bias RCTs)	Yes (included only low risk of bias RCTs)
14.	Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?	Yes	Yes	Yes	Yes	Yes
15.	If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?*	Yes	Yes - as a part of GRADE evidence synthesis	No	Yes	Yes
	Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?	Yes	Yes	Yes	Yes	Unreported

^{*=}indicates a critical domain.

		Meggiolaro 2018	Medeiros 2009	Ogawa 2017	Rambout 2007	Setiawan 2017
OVERA	LL RESULT	CRITICALLY LOW	CRITICALLY LOW	CRITICALLY LOW	CRITICALLY LOW	CRITICALLY LOW
1.	Did the research questions and inclusion criteria for the review include the components of PICO?	No	Yes	Yes	Yes	Yes
2.	Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol?*	No	No	No	Yes	No
3.	Did the review authors explain their selection of the study designs for inclusion in the review?	Yes	Yes	No	No	No
4.	Did the review authors use a comprehensive literature search strategy?*	Yes	Partial Yes	Yes	Yes	Yes
5.	Did the review authors perform study selection in duplicate?	Yes	Yes	Yes	Yes	Yes
6.		Yes	Yes	Unreported	Yes	Yes
7.	Did the review authors provide a list of excluded studies and justify the exclusions?*	No	Yes	No	No. List created and documented reason for exclusion, but this list not provided in publication	No / partial yes: reasons given, but list not given
8.	Did the review authors describe the included studies in adequate detail?	Yes	Yes	Yes	Yes	Yes
9.	Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?*	Yes - Newcastle- Ottowa for observational, AMSTAR for Systematic Review	Yes. Cochrane Gynaecological Cancer Group & Oxford Level of Evidences Classification	Yes: Cochrane RoB tool	Yes. Jadad scale.	Yes

		Meggiolaro 2018	Medeiros 2009	Ogawa 2017	Rambout 2007	Setiawan 2017
10.	Did the review authors report on the sources of funding for the studies included in the review?	Yes	No	No	Yes. Jadad scale.	Yes
11.	If meta-analysis was performed did the review authors use appropriate methods for statistical combination of results?*	No Meta- analysis	Yes	No - heterogeneity identified but not taken into consideration / interrogated	Yes	Yes
12.	If meta-analysis was performed, did the review authors assess the potential impact of RoB in individual studies on the results of the meta-analysis or other evidence synthesis?	No Meta- analysis	Yes	Yes Overall low RoB RCTs	Yes	No
13.	Did the review authors account for RoB in individual studies when interpreting/discussing the results of the review?*	No Meta- analysis	Yes	Yes Overall low RoB RCTs	Yes; all trials 5/5 Jadad	No
14.	Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?	N/A	Yes	No	Yes; all trials 5/5 Jadad	Yes
15.	If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?*	No Meta- analysis	No	No	Yes	Yes
16.	Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?	Yes	Yes	Yes	No	Yes

^{*=}indicates a critical domain.

Appendix 6H: Serious adverse events and deaths (all included reviews)

Study	Relative Risk (RR)/Odds Ratio (OR); 95% Confidence Interval (CI)
Arbyn. 2018	 Serious adverse events: RR 0.98; 95% CI: 0.92 to 1.05 (data from 71,597 participants in 23 RCTs; high-quality evidence) Deaths: RR 1.29; 95% CI: 0.85 to 1.98 (data from 71,176 participants in 23 RCTs; low-quality evidence)
Adelaide HTA 2017 (Parsons et al.)	 Serious adverse events: 4-valent versus placebo: RR 0.93 (95% CI 0.72 to 1.21) 4-valent versus control: RR 0.87 (95% CI 0.43 to 1.78) 2-valent versus placebo: RR 0.87 (95% CI 0.60 to 1.25) 2-valent versus control: RR 1.01 (95% CI 0.95 to 1.07) Deaths: RR not calculated. In the trials that did report causality, no deaths were judged to be related to vaccination In the 4-valent vaccine trials, no deaths were considered vaccine-related In the 2-valent vaccine trials, two studies reported deaths. They did not assess their causality but did report the causes, which were: suicide, car accidents, assault, cancer, Crohn's disease, systemic lupus erythematosus, HIV-related condition and acute myocardial infarction
Coelho et al. 2015	 Meta-analysis was only performed on minor outcomes. From the study authors: "among the analyzed studies, there was only one case of severe adverse event related to the vaccine, which was bronchospasm. The others showed no reports of vaccine-related severe adverse effects or deaths."
Costa et al. 2017	 Serious adverse events were not common, and there was no significant difference between 9- and 4-valent vaccines. Out of more than 27,000 vaccine recipients, a total of 29 and 23 recipients from the 9-valent and 4-valent groups, respectively, experienced a serious vaccine-related adverse event. A total of 6 deaths were recorded from each group but none was judged to be vaccine related.
Lu et al.2011	 Serious Adverse Events*: RR 1.00 (95% CI: 0.91 to 1.09); n=7 studies. Injection-related Serious Adverse Events**: RR 1.82 (95% CI: 0.79 to 4.20); n=7 studies. Deaths: unreported.
Medeiros et al. 2009	 Serious Adverse Events: OR 1.05 (95% CI: 0.91 to 1.21); n=2 trials, both 2-valent vaccine trials. Deaths: Not estimable (0 in intervention, 0 in control).

Meggiolaro et al. 2018	 Serious adverse events other than multiple sclerosis were not assessed. Multiple Sclerosis was deemed not associated with HPV vaccine. 	
Ogawa et al. 2017	Serious adverse events or deaths were not considered. Only solicited and unsolicited local or systemic symptoms were investigated.	
Rambout et al. 2007	 Greater than one serious adverse events: Peto odds ratio 1.00 cl: 0.87 to 1.14) n=6 trials. Death: Peto odds ratio 0.91 (95% Cl: 0.39 to 2.14), n=4 trials. deaths were reported as accidental, and none of the deaths we considered attributable to the vaccine. 	Most
	Note: Medeiros 2009 and Rambout 2007 systematic reviews were very similar in design; difference in outcomes partly explained by model used (fixed effects in Rambout, random effects in Medeiros) and number of included studies.	
Setiawan et al. 2017	Serious adverse events or deaths were not considered. Only local or systemic adverse events were investigated.	

RR=relative risk. OR=odds ratio. CI=confidence interval

^{*&#}x27;Serious Adverse Events' in Lu et al. included abnormal pregnancy outcomes, blood and lymphatic system disorder, hepatobiliary disorder, immune system disorder, cardiac and vascular disorder, gastrointestinal disorder, musculoskeletal and connective tissue disorder, nervous system disorder, psychiatric disorder, renal and urinary disorder, reproductive system and breast disorder, respiratory, thoracic and mediastinal disorder, skin and subcutaneous tissue disorder, neoplasm, infection and infestation, injury, poisoning and procedural complications

^{**&#}x27;Injection-related Serious Adverse Events' in Lu et al. included bronchospasm, gastroenteritis, headache, hypertension, injection-site pain, decrease in joint movement at injection site, hypersensitivity to injection, chills, headache and fever

Appendix 7

Appendix 7A: Search terms and results

Pubmed 20/11/2017		Search Strings	Results
Searches	#1	(human papillomavirus vaccines[MeSH Terms]) OR HPV vaccin* OR HPV immun*	8,087
	#2	((((((((((((((((((((((((((((((((((((((666,270
	#3	((letter[Publication Type] OR editorial[Publication type] OR historical article[Publication Type]) OR animals)	7,823,160
	#4	(#1 AND #2) NOT #3	643

EMBASE 20/11/2017		Search Strings	Results
Searches	#1	('hpv'/exp OR hpv) AND ('vaccine'/exp OR vaccine)	12,146
	#2	HPV AND vaccin*	12,132
	#3	wart AND virus AND vaccine	13,173
	#4	human AND papillomavirus AND vaccine	10,637
	#5	(hpv OR human) AND papillomavirus AND (immunization OR immunisation)	3,059
	#6	#1 OR #2 OR #3 OR #4 OR #5	17,477
	#7	models, AND economic OR 'economics'/exp OR 'economics, pharmaceutical'/exp OR 'economics, medical'/exp OR 'health care costs'/exp OR 'cost benefit analysis'/exp OR 'cost of illness'/exp OR 'cost	1,414,469

	savings'/exp OR 'hospital costs'/exp OR 'economic':ab,ti OR 'costs and cost analysis'/exp OR cost*:ab,ti OR (economic AND evaluation*:ab,ti) OR (economic AND analy*:ab,ti) OR (cost AND analy*:ab,ti) OR (cost AND eff*:ab,ti) OR (cost AND utilit*:ab,ti)	
#8	#6 AND #7	3,626
#9	#8 AND 'human'/de AND [embase]/lim NOT [medline]/lim	1,014
#10	#8 AND 'human'/de AND [embase]/lim NOT [medline]/lim AND ('letter'/it OR 'note'/it OR 'short survey'/it)	116
#11	#9 NOT #10	898

EBSCOhost (CINAHL + EconLit) 20/11/2017		Search Strings	Results
Searches	#1	SU models, economic	12,444
	#2	SU economics OR SU economics, pharmaceutical OR SU economics, medical	770,452
	#3	SU Health Care Costs OR SU Decision Support Techniques OR SU Cost-Benefit Analysis OR SU Cost of Illness OR SU Cost Savings OR SU Hospital Costs	77,705
	#4	TI economic OR AB economic	347,877
	#5	SU costs AND cost analysis	26,827
	#6	TI cost* OR AB cost*	259,919
	#7	TI economic evaluation* OR AB economic evaluation*	6,341
	#8	TI economic analy* OR AB economic analy*	25,267
	#9	TI cost analy* OR AB cost analy*	20,637
	#10	TI cost eff* OR AB cost eff*	53,276
	#11	TI cost benefit* OR AB cost benefit*	17,241
	#12	TI cost utilit* OR AB cost utilit*	3,024
	#13	#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12	1,129,338
	#14	TI human papillomavirus vaccine OR AB human	1,068

	papillomavirus vaccine	
#15	TI HPV vaccine OR AB HPV vaccine	1,982
#16	SU HPV vaccine	2,812
#17	SU human papillomavirus vaccine	9,120
#18	TI HPV immunisation OR AB HPV Immunisation	148
#19	TI HPV immunization OR AB HPV immunization	150
#20	TI human papillomavirus immunization OR AB human papillomavirus immunization	69
#21	TI human papillomavirus immunisation OR AB human papillomavirus immunisation	58
#22	HPV vaccine	2,044
#23	human papillomavirus vaccine	1,145
#24	#14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23	2,683
#25	S13 AND S24	440

Cochrane Collaboration 21/11/2017		Search Strings	Results
Searches	#1	human papillomavirus vaccine	555
	#2	HPV vaccine:ti,ab,kw	547
	#3	HPV immunisation OR HPV immunization	146
	#4	human papillomavirus immunisation OR human papillomavirus immunization	145
	#5	#1 OR #2 OR #3 OR #4	672
	#6	economic:ti,ab,kw	13,157
	#7	cost*:ti,ab,kw	58,209
	#8	economic evaluation*:ti,ab,kw	6,896
	#9	economic analy*:ti,ab,kw	23,012
	#10	cost analy*:ti,ab,kw	44,367
	#11	cost eff*:ti,ab,kw	42,424
	#12	cost benefit*:ti,ab,kw	25,928
	#13	cost utilit*:ti,ab,kw	2,698
	#14	MeSH descriptor: [Economics, Pharmaceutical] explode all trees	244
	#15	MeSH descriptor: [Economics] explode all trees	27,751
	#16	MeSH descriptor: [Economics, Medical] explode all trees	105

#17	MeSH descriptor: [Health Care Costs] explode all trees	7,471
#18	MeSH descriptor: [Decision Support Techniques] explode all trees	3,671
#19	MeSH descriptor: [Cost-Benefit Analysis] explode all trees	18,506
#20	MeSH descriptor: [Cost of Illness] explode all trees	1,349
#21	MeSH descriptor: [Cost Savings] explode all trees	1,021
#22	MeSH descriptor: [Hospital Costs] explode all trees	1,527
#23	MeSH descriptor: [Costs and Cost Analysis] explode all trees	25,599
#24	#6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21 or #22 or #23	75,688
#25	#5 and #24	229